首页 > 最新文献

Cellular and molecular bioengineering最新文献

英文 中文
Remote-Controlled Gene Delivery in Coaxial 3D-Bioprinted Constructs using Ultrasound-Responsive Bioinks. 利用超声响应生物墨水在同轴三维生物打印结构中远程控制基因传递
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-27 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00818-x
Mary K Lowrey, Holly Day, Kevin J Schilling, Katherine T Huynh, Cristiane M Franca, Carolyn E Schutt

Introduction: Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection.

Methods: Phospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2 crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression.

Results: Coaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments.

Conclusions: Our results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00818-x.

导言:同轴三维生物打印技术推动了组织构建物的形成,这种构建物能够再现体外疾病建模和组织工程疗法所需的关键结构和生物物理参数。控制这些结构中的基因表达对于调节细胞信号传导和探测细胞行为至关重要。然而,由于致密的三维支架阻碍了传统载体的扩散,目前的转染策略在时空控制方面受到了限制。为了解决这个问题,我们利用超声响应基因递送生物墨水开发了一种同轴挤压三维生物打印技术。这些生物墨水材料中含有可产生回声的微气泡基因递送颗粒,在超声波照射下可使构建体中的细胞发生声穿透,从而促进可控转染:方法:磷脂包裹的气芯微气泡与报告转基因质粒有效载荷进行静电耦合,并以不同的颗粒浓度掺入含有细胞的藻酸盐生物墨水中。将这些生物墨水装入同轴喷嘴核心,用外鞘中的 CaCl2 交联剂进行挤压生物打印。将生成的生物打印置于 2.25 MHz 聚焦超声波下,评估微泡活化和随后的 DNA 递送及转基因表达情况:结果:建立了同轴打印参数,可使超声响应基因递送颗粒在生物打印的藻酸盐细丝中保持稳定至少 48 小时,同时保持较高的细胞活力。对嵌入细胞的成功超声穿透可实现 DNA 的递送和强大的超声控制转基因表达。转染细胞的数量可通过改变聚焦超声脉冲的数量来调节。通过改变印刷细丝中微气泡的浓度,可调节 DNA 输送的大小区域:我们的研究结果展示了一种成功的同轴三维生物打印技术,旨在促进超声控制的基因递送。这一平台可在同轴生物打印组织构建物中实现远程、时空定义的基因操作,在疾病建模和再生医学方面具有重要应用价值:在线版本包含补充材料,可查阅 10.1007/s12195-024-00818-x。
{"title":"Remote-Controlled Gene Delivery in Coaxial 3D-Bioprinted Constructs using Ultrasound-Responsive Bioinks.","authors":"Mary K Lowrey, Holly Day, Kevin J Schilling, Katherine T Huynh, Cristiane M Franca, Carolyn E Schutt","doi":"10.1007/s12195-024-00818-x","DOIUrl":"https://doi.org/10.1007/s12195-024-00818-x","url":null,"abstract":"<p><strong>Introduction: </strong>Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection.</p><p><strong>Methods: </strong>Phospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl<sub>2</sub> crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression.</p><p><strong>Results: </strong>Coaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments.</p><p><strong>Conclusions: </strong>Our results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00818-x.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"401-421"},"PeriodicalIF":2.3,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538209/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 2024 Young Innovators of Cellular and Molecular Bioengineering. 2024 年细胞和分子生物工程青年创新者。
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-15 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00826-x
Michael R King, Robert M Raphael, Joyce Y Wong
{"title":"The 2024 Young Innovators of Cellular and Molecular Bioengineering.","authors":"Michael R King, Robert M Raphael, Joyce Y Wong","doi":"10.1007/s12195-024-00826-x","DOIUrl":"https://doi.org/10.1007/s12195-024-00826-x","url":null,"abstract":"","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"313-315"},"PeriodicalIF":2.3,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538218/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response. 新型三维巨噬细胞球体模型揭示免疫机械应力与机械免疫反应的相互调控关系
IF 4.6 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-14 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00824-z
Alice Burchett, Saeed Siri, Jun Li, Xin Lu, Meenal Datta

Purpose: In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages directly contribute to mechanical forces in their microenvironment.

Methods: Raw 264.7 murine macrophages were embedded in a confining agarose gel, and proliferated to form spheroids over days/weeks. Gels were synthesized at various concentrations to tune stiffness and were shown to support cell viability and spheroid growth. These cell-agarose constructs were treated with media supplements to promote macrophage polarization. Spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Agarose-embedded macrophages were analyzed for viability, spheroid size, stress generation, and gene expression.

Results: Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration increases gel stiffness, restricts spheroid expansion, limits gel deformation, and causes a decrease in Ki67 expression. Lipopolysaccharide (LPS) stimulation increases spheroid growth, though this effect is reversed with the addition of IFNγ. The mechanosensitive ion channels Piezo1 and TRPV4 have reduced expression with increased stiffness, externally applied compression, LPS stimulation, and M1-like polarization.

Conclusions: Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation and inflammation.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00824-z.

目的:在许多疾病中,巨噬细胞过多会导致不良后果。虽然许多研究比较了巨噬细胞在机械刺激或不同局部硬度下的表型,但还不清楚巨噬细胞是否以及如何直接作用于其微环境中的机械力:方法:将原始 264.7 小鼠巨噬细胞嵌入封闭的琼脂糖凝胶中,经过数天/数周的增殖形成球体。凝胶以不同浓度合成,以调节硬度,结果表明凝胶支持细胞存活和球体生长。用培养基补充剂处理这些细胞-琼脂糖构建体,以促进巨噬细胞极化。球形体的几何形状被用于对巨噬细胞球形体生长在琼脂糖中产生的应变进行计算建模。对琼脂糖包埋的巨噬细胞的活力、球形体大小、应力产生和基因表达进行了分析:结果:巨噬细胞在封闭的琼脂糖凝胶中形成球体并产生生长诱导的机械力(即固体应力),在培养过程中至少可维持 16 天。增加琼脂糖浓度会增加凝胶硬度、限制球体扩张、限制凝胶变形并导致 Ki67 表达下降。脂多糖(LPS)刺激会增加球形体的生长,但加入 IFNγ 后这种效应会逆转。机械敏感性离子通道 Piezo1 和 TRPV4 的表达随着硬度增加、外部施加的压力、LPS 刺激和 M1 样极化而减少:结论:巨噬细胞本身既能对固体应力做出反应,也能产生固体应力。了解巨噬细胞生成生长诱导的固体应力如何应对不同的环境条件,将有助于为涉及巨噬细胞聚集和炎症的多种疾病的治疗策略提供信息:在线版本包含补充材料,可查阅 10.1007/s12195-024-00824-z。
{"title":"Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response.","authors":"Alice Burchett, Saeed Siri, Jun Li, Xin Lu, Meenal Datta","doi":"10.1007/s12195-024-00824-z","DOIUrl":"10.1007/s12195-024-00824-z","url":null,"abstract":"<p><strong>Purpose: </strong>In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages directly contribute to mechanical forces in their microenvironment.</p><p><strong>Methods: </strong>Raw 264.7 murine macrophages were embedded in a confining agarose gel, and proliferated to form spheroids over days/weeks. Gels were synthesized at various concentrations to tune stiffness and were shown to support cell viability and spheroid growth. These cell-agarose constructs were treated with media supplements to promote macrophage polarization. Spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Agarose-embedded macrophages were analyzed for viability, spheroid size, stress generation, and gene expression.</p><p><strong>Results: </strong>Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration increases gel stiffness, restricts spheroid expansion, limits gel deformation, and causes a decrease in Ki67 expression. Lipopolysaccharide (LPS) stimulation increases spheroid growth, though this effect is reversed with the addition of IFNγ. The mechanosensitive ion channels Piezo1 and TRPV4 have reduced expression with increased stiffness, externally applied compression, LPS stimulation, and M1-like polarization.</p><p><strong>Conclusions: </strong>Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation and inflammation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00824-z.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"329-344"},"PeriodicalIF":4.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. 合理设计 HER2 靶向联合疗法,以逆转成纤维细胞保护的 HER2+ 乳腺癌细胞的耐药性。
IF 4.6 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-11 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00823-0
Matthew D Poskus, Jacob McDonald, Matthew Laird, Ruxuan Li, Kyle Norcoss, Ioannis K Zervantonakis

Introduction: Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells.

Methods: Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts.

Results: Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity.

Conclusions: Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00823-0.

导言:成纤维细胞是乳腺肿瘤微环境中一种丰富的细胞类型,它与癌细胞相互作用,并协调肿瘤的进展和耐药性。然而,人们对成纤维细胞衍生因子影响药物敏感性的机制仍知之甚少。在此,我们根据蛋白质组学分析结果开发出合理的联合疗法,以克服成纤维细胞介导的 HER2+ 乳腺癌细胞的耐药性:方法:在单培养和暴露于乳腺成纤维细胞调节培养基的条件下,研究了HER2激酶抑制剂拉帕替尼的药物敏感性。使用反相蛋白质阵列测量蛋白质表达。利用差异表达和多变量回归模型确定了联合疗法的候选靶点。后续实验评估了HER2激酶联合疗法在成纤维细胞保护癌细胞株和成纤维细胞中的效果:结果:与单培养相比,成纤维细胞条件培养基增加了拉帕替尼治疗的乳腺癌细胞中纤溶酶原激活物抑制剂-1(PAI1)和细胞周期调节剂polo like kinase 1(PLK1)的表达。拉帕替尼与针对PAI1或PLK1的抑制剂联合治疗,在与成纤维细胞直接共培养和成纤维细胞调节培养基保护两种条件下,都能消除成纤维细胞保护的癌细胞。对公开的临床转录组数据集的分析表明,HER2靶向疗法无法抑制富含基质的HER2+乳腺肿瘤中PLK1的表达,PAI1基因的高表达与基质密度高有关。此外,我们还发现了一种以表观遗传学为导向的方法,该方法使用溴链和外膜抑制剂来全面靶向成纤维细胞诱导的癌细胞蛋白质组适应性,也能恢复拉帕替尼的敏感性:我们以数据为驱动的乳腺癌细胞蛋白质组学分析框架确定了蛋白水解降解调节因子PAI1和细胞周期调节因子PLK1是成纤维细胞介导的治疗耐药性的预测因子。针对HER2激酶和这些成纤维细胞诱导的信号适应性的联合疗法可消除成纤维细胞保护的HER2+乳腺癌细胞:在线版本包含补充材料,可在10.1007/s12195-024-00823-0上获取。
{"title":"Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells.","authors":"Matthew D Poskus, Jacob McDonald, Matthew Laird, Ruxuan Li, Kyle Norcoss, Ioannis K Zervantonakis","doi":"10.1007/s12195-024-00823-0","DOIUrl":"10.1007/s12195-024-00823-0","url":null,"abstract":"<p><strong>Introduction: </strong>Fibroblasts, an abundant cell type in the breast tumor microenvironment, interact with cancer cells and orchestrate tumor progression and drug resistance. However, the mechanisms by which fibroblast-derived factors impact drug sensitivity remain poorly understood. Here, we develop rational combination therapies that are informed by proteomic profiling to overcome fibroblast-mediated therapeutic resistance in HER2+ breast cancer cells.</p><p><strong>Methods: </strong>Drug sensitivity to the HER2 kinase inhibitor lapatinib was characterized under conditions of monoculture and exposure to breast fibroblast-conditioned medium. Protein expression was measured using reverse phase protein arrays. Candidate targets for combination therapy were identified using differential expression and multivariate regression modeling. Follow-up experiments were performed to evaluate the effects of HER2 kinase combination therapies in fibroblast-protected cancer cell lines and fibroblasts.</p><p><strong>Results: </strong>Compared to monoculture, fibroblast-conditioned medium increased the expression of plasminogen activator inhibitor-1 (PAI1) and cell cycle regulator polo like kinase 1 (PLK1) in lapatinib-treated breast cancer cells. Combination therapy of lapatinib with inhibitors targeting either PAI1 or PLK1, eliminated fibroblast-protected cancer cells, under both conditions of direct coculture with fibroblasts and protection by fibroblast-conditioned medium. Analysis of publicly available, clinical transcriptomic datasets revealed that HER2-targeted therapy fails to suppress PLK1 expression in stroma-rich HER2+ breast tumors and that high PAI1 gene expression associates with high stroma density. Furthermore, we showed that an epigenetics-directed approach using a bromodomain and extraterminal inhibitor to globally target fibroblast-induced proteomic adaptions in cancer cells, also restored lapatinib sensitivity.</p><p><strong>Conclusions: </strong>Our data-driven framework of proteomic profiling in breast cancer cells identified the proteolytic degradation regulator PAI1 and the cell cycle regulator PLK1 as predictors of fibroblast-mediated treatment resistance. Combination therapies targeting HER2 kinase and these fibroblast-induced signaling adaptations eliminates fibroblast-protected HER2+ breast cancer cells.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00823-0.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"491-506"},"PeriodicalIF":4.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Empowering High-Throughput High-Content Analysis of Microphysiological Models: Open-Source Software for Automated Image Analysis of Microvessel Formation and Cell Invasion. 增强微观生理学模型的高通量高内容分析能力:用于自动图像分析微血管形成和细胞侵袭的开源软件。
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-10 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00821-2
Noah Wiggin, Carson Cook, Mitchell Black, Ines Cadena, Salam Rahal-Arabi, Chandler L Asnes, Yoanna Ivanova, Marian H Hettiaratchi, Laurel E Hind, Kaitlin C Fogg

Purpose: The primary aim of this study was to develop an open-source Python-based software for the automated analysis of dynamic cell behaviors in microphysiological models using non-confocal microscopy. This research seeks to address the existing gap in accessible tools for high-throughput analysis of endothelial tube formation and cell invasion in vitro, facilitating the rapid assessment of drug sensitivity.

Methods: Our approach involved annotating over 1000 2 mm Z-stacks of cancer and endothelial cell co-culture model and training machine learning models to automatically calculate cell coverage, cancer invasion depth, and microvessel dynamics. Specifically, cell coverage area was computed using focus stacking and Gaussian mixture models to generate thresholded Z-projections. Cancer invasion depth was determined using a ResNet-50 binary classification model, identifying which Z-planes contained invaded cells and measuring the total invasion depth. Lastly, microvessel dynamics were assessed through a U-Net Xception-style segmentation model for vessel prediction, the DisPerSE algorithm to extract an embedded graph, then graph analysis to quantify microvessel length and connectivity. To further validate our software, we reanalyzed an image set from a high-throughput drug screen involving a chemotherapy agent on a 3D cervical and endothelial co-culture model. Lastly, we applied this software to two naive image datasets from coculture lumen and microvascular fragment models.

Results: The software accurately measured cell coverage, cancer invasion, and microvessel length, yielding drug sensitivity IC50 values with a 95% confidence level compared to manual calculations. This approach significantly reduced the image processing time from weeks down to h. Furthermore, the software was able to calculate cell coverage, microvessel length, and invasion depth from two additional microphysiological models that were imaged with confocal microscopy, highlighting the versatility of the software.

Conclusions: Our free and open source software offers an automated solution for quantifying 3D cell behavior in microphysiological models assessed using non-confocal microscopy, providing the broader Cellular and Molecular Bioengineering community with an alternative to standard confocal microscopy paired with proprietary software.This software can be found in our GitHub repository: https://github.com/fogg-lab/tissue-model-analysis-tools.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00821-2.

目的:本研究的主要目的是开发一款基于 Python 的开源软件,用于使用非聚焦显微镜自动分析微生理学模型中的动态细胞行为。这项研究旨在解决目前在体外内皮管形成和细胞侵袭高通量分析工具方面存在的空白,从而促进药物敏感性的快速评估:我们的方法包括标注 1000 多张癌症和内皮细胞共培养模型的 2 毫米 Z 叠图,并训练机器学习模型来自动计算细胞覆盖面积、癌症侵袭深度和微血管动态。具体来说,细胞覆盖面积是通过聚焦堆叠和高斯混合模型计算得出的,以生成阈值化的 Z 投影。使用 ResNet-50 二元分类模型确定癌症侵袭深度,识别哪些 Z 平面包含侵袭细胞,并测量总侵袭深度。最后,通过 U-Net Xception 式血管预测分割模型评估微血管动态,使用 DisPerSE 算法提取嵌入图,然后通过图分析量化微血管长度和连通性。为了进一步验证我们的软件,我们在三维宫颈和内皮共培养模型上重新分析了涉及化疗药物的高通量药物筛选图像集。最后,我们将该软件应用于来自共培养管腔和微血管片段模型的两个天真图像数据集:结果:与人工计算相比,该软件准确测量了细胞覆盖率、癌症侵袭和微血管长度,得出的药物敏感性 IC50 值置信度达到 95%。此外,该软件还能从另外两个用共聚焦显微镜成像的微观生理模型中计算细胞覆盖率、微血管长度和侵袭深度,突出了该软件的多功能性:我们的免费开源软件为量化使用非共焦点显微镜评估的微生理学模型中的三维细胞行为提供了自动化解决方案,为更广泛的细胞与分子生物工程社区提供了标准共焦点显微镜与专有软件搭配的替代方案。该软件可在我们的 GitHub 存储库中找到:https://github.com/fogg-lab/tissue-model-analysis-tools.Supplementary information:在线版本包含补充材料,可查阅 10.1007/s12195-024-00821-2。
{"title":"Empowering High-Throughput High-Content Analysis of Microphysiological Models: Open-Source Software for Automated Image Analysis of Microvessel Formation and Cell Invasion.","authors":"Noah Wiggin, Carson Cook, Mitchell Black, Ines Cadena, Salam Rahal-Arabi, Chandler L Asnes, Yoanna Ivanova, Marian H Hettiaratchi, Laurel E Hind, Kaitlin C Fogg","doi":"10.1007/s12195-024-00821-2","DOIUrl":"https://doi.org/10.1007/s12195-024-00821-2","url":null,"abstract":"<p><strong>Purpose: </strong>The primary aim of this study was to develop an open-source Python-based software for the automated analysis of dynamic cell behaviors in microphysiological models using non-confocal microscopy. This research seeks to address the existing gap in accessible tools for high-throughput analysis of endothelial tube formation and cell invasion in vitro, facilitating the rapid assessment of drug sensitivity.</p><p><strong>Methods: </strong>Our approach involved annotating over 1000 2 mm Z-stacks of cancer and endothelial cell co-culture model and training machine learning models to automatically calculate cell coverage, cancer invasion depth, and microvessel dynamics. Specifically, cell coverage area was computed using focus stacking and Gaussian mixture models to generate thresholded Z-projections. Cancer invasion depth was determined using a ResNet-50 binary classification model, identifying which Z-planes contained invaded cells and measuring the total invasion depth. Lastly, microvessel dynamics were assessed through a U-Net Xception-style segmentation model for vessel prediction, the DisPerSE algorithm to extract an embedded graph, then graph analysis to quantify microvessel length and connectivity. To further validate our software, we reanalyzed an image set from a high-throughput drug screen involving a chemotherapy agent on a 3D cervical and endothelial co-culture model. Lastly, we applied this software to two naive image datasets from coculture lumen and microvascular fragment models.</p><p><strong>Results: </strong>The software accurately measured cell coverage, cancer invasion, and microvessel length, yielding drug sensitivity IC<sub>50</sub> values with a 95% confidence level compared to manual calculations. This approach significantly reduced the image processing time from weeks down to h. Furthermore, the software was able to calculate cell coverage, microvessel length, and invasion depth from two additional microphysiological models that were imaged with confocal microscopy, highlighting the versatility of the software.</p><p><strong>Conclusions: </strong>Our free and open source software offers an automated solution for quantifying 3D cell behavior in microphysiological models assessed using non-confocal microscopy, providing the broader Cellular and Molecular Bioengineering community with an alternative to standard confocal microscopy paired with proprietary software.This software can be found in our GitHub repository: https://github.com/fogg-lab/tissue-model-analysis-tools.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00821-2.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"369-383"},"PeriodicalIF":2.3,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells. 基于图谱的超解析蛋白质-蛋白质相互作用空间邻近性预测单细胞中的抗癌药物反应
IF 2.3 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-10-06 eCollection Date: 2024-10-01 DOI: 10.1007/s12195-024-00822-1
Nicholas Zhang, Shuangyi Cai, Mingshuang Wang, Thomas Hu, Frank Schneider, Shi-Yong Sun, Ahmet F Coskun

Purpose: Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models.

Methods: Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells.

Results: GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54.

Conclusion: The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance.

Supplementary information: The online version contains supplementary material available at 10.1007/s12195-024-00822-1.

目的:目前的大量分子检测无法捕捉癌症中的空间信号活动,限制了我们对耐药机制的了解。我们开发了一种基于图的超分辨率蛋白质-蛋白质相互作用(GSR-PPI)技术,从空间上解析单细胞信号转导网络,并利用深度学习分类模型评估更高分辨率的显微镜是否能加强PPIs的生物学研究:用100 nM Osimertinib处理表皮生长因子受体突变体(EGFRm)PC9和HCC827细胞(大于10,000个细胞),进行单细胞空间邻近连接试验(PLA,≤9个PPI对)。使用宽视场和超分辨率显微镜(Zeiss Airyscan、SRRF)获得了多重 PPI 图像。基于图的深度学习模型分析了亚细胞蛋白质相互作用,以对药物治疗状态进行分类,并在临床组织样本上测试 GSR-PPI。GSR-PPI 将 PPI 节点三角化为三维关系,预测药物治疗标签。使用准确率、AUC 和 F1 分数评估了生物鉴别能力(BDA)。该方法还应用于T细胞的三维空间蛋白质组分子像素化(PixelGen)数据:结果:GSR-PPI 在预测表皮生长因子受体(EGFRm)细胞中多重 PPI 成像的药物反应方面优于基线模型。超分辨率数据大大提高了局部宽视野成像的准确性。GSR-PPI 对癌细胞和人体肺组织中的药物治疗状态进行了分类,其性能随着成像分辨率的提高而提高。它能区分 HCC827 细胞和人体组织中的单一药物疗法和联合药物疗法。此外,GSR-PPI 还能准确区分 T 细胞刺激状态,识别 CD44、CD45 和 CD54 等关键节点:GSR-PPI框架为空间蛋白质相互作用和药物反应提供了宝贵的见解,加强了信号生物学和耐药性的研究:在线版本包含补充材料,可查阅 10.1007/s12195-024-00822-1。
{"title":"Graph-Based Spatial Proximity of Super-Resolved Protein-Protein Interactions Predicts Cancer Drug Responses in Single Cells.","authors":"Nicholas Zhang, Shuangyi Cai, Mingshuang Wang, Thomas Hu, Frank Schneider, Shi-Yong Sun, Ahmet F Coskun","doi":"10.1007/s12195-024-00822-1","DOIUrl":"https://doi.org/10.1007/s12195-024-00822-1","url":null,"abstract":"<p><strong>Purpose: </strong>Current bulk molecular assays fail to capture spatial signaling activities in cancers, limiting our understanding of drug resistance mechanisms. We developed a graph-based super-resolution protein-protein interaction (GSR-PPI) technique to spatially resolve single-cell signaling networks and evaluate whether higher resolution microscopy enhances the biological study of PPIs using deep learning classification models.</p><p><strong>Methods: </strong>Single-cell spatial proximity ligation assays (PLA, ≤ 9 PPI pairs) were conducted on EGFR mutant (EGFRm) PC9 and HCC827 cells (>10,000 cells) treated with 100 nM Osimertinib. Multiplexed PPI images were obtained using wide-field and super-resolution microscopy (Zeiss Airyscan, SRRF). Graph-based deep learning models analyzed subcellular protein interactions to classify drug treatment states and test GSR-PPI on clinical tissue samples. GSR-PPI triangulated PPI nodes into 3D relationships, predicting drug treatment labels. Biological discriminative ability (BDA) was evaluated using accuracy, AUC, and F1 scores. The method was also applied to 3D spatial proteomic molecular pixelation (PixelGen) data from T cells.</p><p><strong>Results: </strong>GSR-PPI outperformed baseline models in predicting drug responses from multiplexed PPI imaging in EGFRm cells. Super-resolution data significantly improved accuracy over localized wide-field imaging. GSR-PPI classified drug treatment states in cancer cells and human lung tissues, with performance improving as imaging resolution increased. It differentiated single and combination drug therapies in HCC827 cells and human tissues. Additionally, GSR-PPI accurately distinguished T-cell stimulation states, identifying key nodes such as CD44, CD45, and CD54.</p><p><strong>Conclusion: </strong>The GSR-PPI framework provides valuable insights into spatial protein interactions and drug responses, enhancing the study of signaling biology and drug resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12195-024-00822-1.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"17 5","pages":"467-490"},"PeriodicalIF":2.3,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538221/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Based on Medicine, The Now and Future of Large Language Models 基于医学,大型语言模型的现状与未来
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-16 DOI: 10.1007/s12195-024-00820-3
Ziqing Su, Guozhang Tang, Rui Huang, Yang Qiao, Zheng Zhang, Xingliang Dai

Objectives

This review explores the potential applications of large language models (LLMs) such as ChatGPT, GPT-3.5, and GPT-4 in the medical field, aiming to encourage their prudent use, provide professional support, and develop accessible medical AI tools that adhere to healthcare standards.

Methods

This paper examines the impact of technologies such as OpenAI's Generative Pre-trained Transformers (GPT) series, including GPT-3.5 and GPT-4, and other large language models (LLMs) in medical education, scientific research, clinical practice, and nursing. Specifically, it includes supporting curriculum design, acting as personalized learning assistants, creating standardized simulated patient scenarios in education; assisting with writing papers, data analysis, and optimizing experimental designs in scientific research; aiding in medical imaging analysis, decision-making, patient education, and communication in clinical practice; and reducing repetitive tasks, promoting personalized care and self-care, providing psychological support, and enhancing management efficiency in nursing.

Results

LLMs, including ChatGPT, have demonstrated significant potential and effectiveness in the aforementioned areas, yet their deployment in healthcare settings is fraught with ethical complexities, potential lack of empathy, and risks of biased responses.

Conclusion

Despite these challenges, significant medical advancements can be expected through the proper use of LLMs and appropriate policy guidance. Future research should focus on overcoming these barriers to ensure the effective and ethical application of LLMs in the medical field.

目的本综述探讨了大型语言模型(LLM)(如 ChatGPT、GPT-3.5 和 GPT-4 等)在医疗领域的潜在应用,旨在鼓励谨慎使用这些模型,提供专业支持,并开发符合医疗保健标准的可访问的医疗人工智能工具。方法本文研究了 OpenAI 的生成预训练转换器(GPT)系列(包括 GPT-3.5 和 GPT-4)和其他大型语言模型(LLM)等技术在医学教育、科学研究、临床实践和护理方面的影响。具体来说,包括在教育领域支持课程设计、充当个性化学习助手、创建标准化模拟病人情景;在科研领域协助撰写论文、分析数据、优化实验设计;在临床实践领域协助医学影像分析、决策、病人教育和沟通;在护理领域减少重复性工作、促进个性化护理和自我护理、提供心理支持、提高管理效率。结果包括 ChatGPT 在内的 LLMs 在上述领域表现出了巨大的潜力和有效性,然而在医疗环境中应用 LLMs 却充满了复杂的伦理问题、可能缺乏同理心以及有偏差反应的风险。未来的研究应侧重于克服这些障碍,以确保在医疗领域有效、合乎道德地应用 LLM。
{"title":"Based on Medicine, The Now and Future of Large Language Models","authors":"Ziqing Su, Guozhang Tang, Rui Huang, Yang Qiao, Zheng Zhang, Xingliang Dai","doi":"10.1007/s12195-024-00820-3","DOIUrl":"https://doi.org/10.1007/s12195-024-00820-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>This review explores the potential applications of large language models (LLMs) such as ChatGPT, GPT-3.5, and GPT-4 in the medical field, aiming to encourage their prudent use, provide professional support, and develop accessible medical AI tools that adhere to healthcare standards.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This paper examines the impact of technologies such as OpenAI's Generative Pre-trained Transformers (GPT) series, including GPT-3.5 and GPT-4, and other large language models (LLMs) in medical education, scientific research, clinical practice, and nursing. Specifically, it includes supporting curriculum design, acting as personalized learning assistants, creating standardized simulated patient scenarios in education; assisting with writing papers, data analysis, and optimizing experimental designs in scientific research; aiding in medical imaging analysis, decision-making, patient education, and communication in clinical practice; and reducing repetitive tasks, promoting personalized care and self-care, providing psychological support, and enhancing management efficiency in nursing.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>LLMs, including ChatGPT, have demonstrated significant potential and effectiveness in the aforementioned areas, yet their deployment in healthcare settings is fraught with ethical complexities, potential lack of empathy, and risks of biased responses.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Despite these challenges, significant medical advancements can be expected through the proper use of LLMs and appropriate policy guidance. Future research should focus on overcoming these barriers to ensure the effective and ethical application of LLMs in the medical field.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"16 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer 多室微血管化肿瘤芯片用于研究卵巢癌中肿瘤与基质之间的相互作用和耐药性
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-14 DOI: 10.1007/s12195-024-00817-y
Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente

Introduction

The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.

Methods

We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).

Results

The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.

Conclusions

Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.

导言大多数接受标准化疗的卵巢癌(OC)患者会在 5 年内产生化疗耐药性。肿瘤微环境(TME)是影响疾病进展和治疗反应的动态因素。我们开发了一种三维微血管化多微切肿瘤芯片,由五个腔室(中央癌症腔室、两侧基质腔室和两个外循环腔室)组成,以再现肿瘤微环境的分区,并研究其对耐药性的影响。基质室包括单独的内皮细胞或与正常成纤维细胞或癌症相关成纤维细胞(CAF)共培养的内皮细胞。结果片上肿瘤再现了TME的空间分区,包括血管样结构、基质介导的细胞外基质(ECM)重塑、氧梯度的产生以及药物从循环室向癌症室的延迟扩散/渗透。与正常成纤维细胞相比,在有 CAF 存在的情况下,癌症室模拟了类似转移的迁移,并增加了对卡铂/紫杉醇治疗的耐药性。ECM 靶向疗法可挽救 CAF 介导的耐药性。重要的是,这些结果表明,细胞串扰再现和空间组织分区对于确定分区 OC-TME 对耐药性的影响至关重要。这项技术有望指导设计更有效、更有针对性的治疗策略,以克服 OC 的化疗耐药性。
{"title":"Multicompartmentalized Microvascularized Tumor-on-a-Chip to Study Tumor-Stroma Interactions and Drug Resistance in Ovarian Cancer","authors":"Simona Plesselova, Kristin Calar, Hailey Axemaker, Emma Sahly, Amrita Bhagia, Jessica L. Faragher, Darci M. Fink, Pilar de la Puente","doi":"10.1007/s12195-024-00817-y","DOIUrl":"https://doi.org/10.1007/s12195-024-00817-y","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>The majority of ovarian cancer (OC) patients receiving standard of care chemotherapy develop chemoresistance within 5 years. The tumor microenvironment (TME) is a dynamic and influential player in disease progression and therapeutic response. However, there is a lack of models that allow us to elucidate the compartmentalized nature of TME in a controllable, yet physiologically relevant manner and its critical role in modulating drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We developed a 3D microvascularized multiniche tumor-on-a-chip formed by five chambers (central cancer chamber, flanked by two lateral stromal chambers and two external circulation chambers) to recapitulate OC-TME compartmentalization and study its influence on drug resistance. Stromal chambers included endothelial cells alone or cocultured with normal fibroblasts or cancer-associated fibroblasts (CAF).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The tumor-on-a-chip recapitulated spatial TME compartmentalization including vessel-like structure, stromal-mediated extracellular matrix (ECM) remodeling, generation of oxygen gradients, and delayed drug diffusion/penetration from the circulation chamber towards the cancer chamber. The cancer chamber mimicked metastasis-like migration and increased drug resistance to carboplatin/paclitaxel treatment in the presence of CAF when compared to normal fibroblasts. CAF-mediated drug resistance was rescued by ECM targeted therapy. Critically, these results demonstrate that cellular crosstalk recreation and spatial organization through compartmentalization are essential to determining the effect of the compartmentalized OC-TME on drug resistance.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our results present a functionally characterized microvascularized multiniche tumor-on-a-chip able to recapitulate TME compartmentalization influencing drug resistance. This technology holds the potential to guide the design of more effective and targeted therapeutic strategies to overcome chemoresistance in OC.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"15 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins 增强重组蛋白质表面展示的新型细菌底盘
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-13 DOI: 10.1007/s12195-024-00819-w
Rui Zhang, Ningyuan Ye, Zongqi Wang, Shaobo Yang, Jiahe Li

Introduction

Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in E. coli as a new strategy to improve the surface display of recombinant proteins.

Methods

We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out ompA in two E. coli strains, K-12 MG1655 and E. coli BL-21, which have broad research and therapeutic applications. We then combined ompA knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade.

Results

A total of six different display constructs were tested for their display levels by flow cytometry, showing that the ompA knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains.

Conclusions

By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology’s relevance in the field.

引言 细菌表面展示是一种将蛋白质和分子展示在细菌细胞外表面的重要生物技术。然而,它也有局限性,包括对宿主细菌的潜在毒性和显示效率的可变性。为了解决这些问题,我们研究了去除大肠杆菌中丰富的非必要外膜蛋白(OMPs)作为改善重组蛋白表面展示的新策略。我们在两种大肠杆菌菌株(K-12 MG1655 和大肠杆菌 BL-21)中成功敲除了 OmpA,这两种菌株具有广泛的研究和治疗应用价值。然后,我们将敲除 ompA 的菌株和两种 OMP 与三种治疗蛋白结合起来,包括抗毒素酶(ClbS)、用于激活细胞毒性 T 细胞的白细胞介素 18(IL-18)和用于阻断免疫检查点的抗 CTLA4 纳米抗体(αCTLA4)。结果 通过流式细胞仪测试了六种不同的显示构建物的显示水平,结果显示,与同源野生型菌株相比,oppA 基因敲除菌株提高了细菌中显示的百分比和水平。此外,治疗效果的提高也为基于活细菌的疗法提供了可能性,扩大了该技术在该领域的相关性。
{"title":"A New Bacterial Chassis for Enhanced Surface Display of Recombinant Proteins","authors":"Rui Zhang, Ningyuan Ye, Zongqi Wang, Shaobo Yang, Jiahe Li","doi":"10.1007/s12195-024-00819-w","DOIUrl":"https://doi.org/10.1007/s12195-024-00819-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Bacterial surface display is a valuable biotechnology technique for presenting proteins and molecules on the outer surface of bacterial cells. However, it has limitations, including potential toxicity to host bacteria and variability in display efficiency. To address these issues, we investigated the removal of abundant non-essential outer membrane proteins (OMPs) in <i>E. coli</i> as a new strategy to improve the surface display of recombinant proteins.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We targeted OmpA, a highly prevalent OMP in E. coli, using the lambda red method. We successfully knocked out <i>ompA</i> in two <i>E. coli</i> strains, K-12 MG1655 and <i>E. coli</i> BL-21, which have broad research and therapeutic applications. We then combined <i>ompA</i> knockout strains and two OMPs with three therapeutic proteins including an anti-toxin enzyme (ClbS), interleukin 18 (IL-18) for activating cytotoxic T cells and an anti- CTLA4 nanobody (αCTLA4) for immune checkpoint blockade.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>A total of six different display constructs were tested for their display levels by flow cytometry, showing that the <i>ompA</i> knockout strains increased the percentage as well as the levels of display in bacteria compared to those of isogenic wild-type strains.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>By removing non-essential, highly abundant surface proteins, we develop an efficient platform for displaying enzymes and antibodies, with potential industrial and therapeutic applications. Additionally, the enhanced therapeutic efficacy opens possibilities for live bacteria-based therapeutics, expanding the technology’s relevance in the field.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"3 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release 重组抗体和合成抗体在调节蛋白质释放方面的功能相当
IF 2.8 4区 医学 Q3 BIOPHYSICS Pub Date : 2024-09-12 DOI: 10.1007/s12195-024-00815-0
Jonathan Dorogin, Morrhyssey A. Benz, Cameron J. Moore, Danielle S. W. Benoit, Marian H. Hettiaratchi

Purpose

Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis.

Methods

High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) E. coli and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA).

Results

Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies.

Conclusions

Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.

目的 亲和抗体是一类用途广泛的亲和蛋白,具有广泛的治疗用途,从用于成像的造影剂到细胞靶向治疗。我们已经发现了几种与骨形态发生蛋白-2(BMP-2)具有不同结合亲和力的特异性亲和抗体,并证明了根据亲和抗体亲和力的强弱来调节BMP-2从亲和抗体结合的聚(乙二醇)马来酰亚胺(PEG-mal)水凝胶中的释放率的能力。方法用BL21(DE3)大肠杆菌重组表达高亲和力和低亲和力的BMP-2特异性亲和抗体,并用微波辅助固相肽合成法与Fmoc-Gly-Wang树脂进行化学合成。亲和抗体的二级结构和亲和抗体-BMP-2结合的解离常数分别通过圆二色性和生物层干涉仪进行了表征。内毒素水平是通过发色性嗜碱性卵母细胞裂解液(LAL)检测法测定的。通过酶联免疫吸附试验(ELISA)定量评估水凝胶的控释能力。结果 通过圆二色性测定,合成和重组的亲和抗体均为α螺旋型。合成的高亲和力和低亲和力BMP-2特异性亲和抗体与重组亲和抗体的BMP-2结合解离常数相当。重组亲和抗体在纯化后保留了一些内毒素,而合成亲和抗体中检测到的内毒素未超过美国食品药品管理局允许的限度。结论合成亲和抗体的结构和功能与重组亲和抗体相当,同时减少了内毒素污染并提高了产品产量,这表明固相肽合成是生产用于控制蛋白质释放和其他应用的亲和抗体的可行方法。
{"title":"Recombinant and Synthetic Affibodies Function Comparably for Modulating Protein Release","authors":"Jonathan Dorogin, Morrhyssey A. Benz, Cameron J. Moore, Danielle S. W. Benoit, Marian H. Hettiaratchi","doi":"10.1007/s12195-024-00815-0","DOIUrl":"https://doi.org/10.1007/s12195-024-00815-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Affibodies are a class of versatile affinity proteins with a wide variety of therapeutic applications, ranging from contrast agents for imaging to cell-targeting therapeutics. We have identified several affibodies specific to bone morphogenetic protein-2 (BMP-2) with a range of binding affinities and demonstrated the ability to tune release rate of BMP-2 from affibody-conjugated poly(ethylene glycol) maleimide (PEG-mal) hydrogels based on affibody affinity strength. In this work, we compare the purity, structure, and activity of recombinant, bacterially-expressed BMP-2-specific affibodies with affibodies synthesized via solid-phase peptide synthesis.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>High- and low-affinity BMP-2-specific affibodies were recombinantly expressed using BL21(DE3) <i>E. coli</i> and chemically synthesized using microwave-assisted solid-phase peptide synthesis with Fmoc-Gly-Wang resin. The secondary structures of the affibodies and dissociation constants of affibody-BMP-2 binding were characterized by circular dichroism and biolayer interferometry, respectively. Endotoxin levels were measured using chromogenic limulus amebocyte lysate (LAL) assays. Affibody-conjugated PEG-mal hydrogels were fabricated and loaded with BMP-2 to evaluate hydrogel capacity for controlled release, quantified by enzyme-linked immunosorbent assays (ELISA).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Synthetic and recombinant affibodies were determined to be α-helical by circular dichroism. The synthetic high- and low-affinity BMP-2-specific affibodies demonstrated comparable BMP-2 binding dissociation constants to their recombinant counterparts. Recombinant affibodies retained some endotoxins after purification, while endotoxins were not detected in the synthetic affibodies above FDA permissible limits. High-affinity affibody-conjugated hydrogels reduced cumulative BMP-2 release compared to the low-affinity affibody-conjugated hydrogels and hydrogels without affibodies.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Synthetic affibodies demonstrate comparable structure and function to recombinant affibodies while reducing endotoxin contamination and increasing product yield, indicating that solid-phase peptide synthesis is a viable method of producing affibodies for controlled protein release and other applications.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"19 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142189696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and molecular bioengineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1