Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework

Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu
{"title":"Leveraging large language model to generate a novel metaheuristic algorithm with CRISPE framework","authors":"Rui Zhong, Yuefeng Xu, Chao Zhang, Jun Yu","doi":"10.1007/s10586-024-04654-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04654-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce the large language model (LLM) ChatGPT-3.5 to automatically and intelligently generate a new metaheuristic algorithm (MA) according to the standard prompt engineering framework CRISPE (i.e., Capacity and Role, Insight, Statement, Personality, and Experiment). The novel animal-inspired MA named Zoological Search Optimization (ZSO) draws inspiration from the collective behaviors of animals for solving continuous optimization problems. Specifically, the basic ZSO algorithm involves two search operators: the prey-predator interaction operator and the social flocking operator to balance exploration and exploitation well. Furthermore, we designed four variants of the ZSO algorithm with slight human-interacted adjustment. In numerical experiments, we comprehensively investigate the performance of ZSO-derived algorithms on CEC2014 benchmark functions, CEC2022 benchmark functions, and six engineering optimization problems. 20 popular and state-of-the-art MAs are employed as competitors. The experimental results and statistical analysis confirm the efficiency and effectiveness of ZSO-derived algorithms. At the end of this paper, we explore the prospects for the development of the metaheuristics community under the LLM era.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
借助 CRISPE 框架,利用大型语言模型生成新型元搜索算法
在本文中,我们引入了大型语言模型(LLM)ChatGPT-3.5,以根据标准提示工程框架 CRISPE(即能力与角色、洞察力、陈述、个性和实验)自动智能地生成一种新的元启发式算法(MA)。这种受动物启发而产生的新型求导算法被命名为 "动物搜索优化"(ZSO),它从动物解决连续优化问题的集体行为中汲取灵感。具体来说,基本的 ZSO 算法包含两个搜索算子:猎物-猎食者互动算子和社会成群算子,以很好地平衡探索和利用。此外,我们还设计了 ZSO 算法的四个变体,并在人为干预下进行了微调。在数值实验中,我们全面考察了 ZSO 衍生算法在 CEC2014 基准函数、CEC2022 基准函数和六个工程优化问题上的性能。作为竞争对手,我们采用了 20 种流行的先进 MA。实验结果和统计分析证实了 ZSO 衍生算法的效率和有效性。在本文的最后,我们探讨了在 LLM 时代元启发式算法界的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1