Magnetic Entropy Change Studies in LaCr1−xGaxO3 (x = 0, 0.25, 0.5)

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED Journal of Superconductivity and Novel Magnetism Pub Date : 2024-07-09 DOI:10.1007/s10948-024-06799-2
Rajalekshmi TR, MS Ramachandra Rao, K. Sethupathi
{"title":"Magnetic Entropy Change Studies in LaCr1−xGaxO3 (x = 0, 0.25, 0.5)","authors":"Rajalekshmi TR, MS Ramachandra Rao, K. Sethupathi","doi":"10.1007/s10948-024-06799-2","DOIUrl":null,"url":null,"abstract":"<p>This study analyzes the variations within LaCrO<sub>3</sub> induced by diamagnetic gallium (Ga) substitution at the chromium (Cr) sites, exploring the consequential changes in both structural configuration and magnetic attributes. Through structural characterization employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), the modified lattice parameters and crystalline structure resulting from Ga incorporation are revealed, shedding light on the structural and phase modifications within the material. The magnetic property investigations unveil the impact on the weak ferromagnetism intrinsic to LaCrO<sub>3</sub> and in Ga substituted samples. Additionally, this research scrutinizes the consequential shifts in entropy resulting from Ga substitution, offering insights into the material’s thermodynamic properties. The findings elucidate the intricate relationship between structural modifications and magnetic properties within perovskite oxides, providing valuable insights into the multifunctional effects of Ga substitution on LaCrO<sub>3</sub>.</p>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s10948-024-06799-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study analyzes the variations within LaCrO3 induced by diamagnetic gallium (Ga) substitution at the chromium (Cr) sites, exploring the consequential changes in both structural configuration and magnetic attributes. Through structural characterization employing X-ray diffraction (XRD) and scanning electron microscopy (SEM), the modified lattice parameters and crystalline structure resulting from Ga incorporation are revealed, shedding light on the structural and phase modifications within the material. The magnetic property investigations unveil the impact on the weak ferromagnetism intrinsic to LaCrO3 and in Ga substituted samples. Additionally, this research scrutinizes the consequential shifts in entropy resulting from Ga substitution, offering insights into the material’s thermodynamic properties. The findings elucidate the intricate relationship between structural modifications and magnetic properties within perovskite oxides, providing valuable insights into the multifunctional effects of Ga substitution on LaCrO3.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LaCr1-xGaxO3 (x = 0、0.25、0.5)中的磁熵变化研究
本研究分析了铬(Cr)位上的二磁性镓(Ga)取代引起的 LaCrO3 内部的变化,探讨了结构构型和磁性属性的相应变化。通过使用 X 射线衍射(XRD)和扫描电子显微镜(SEM)进行结构表征,揭示了镓的加入所导致的晶格参数和晶体结构的改变,从而揭示了材料内部的结构和相变。磁性能研究揭示了对 LaCrO3 固有的弱铁磁性和镓替代样品的影响。此外,这项研究还仔细观察了镓置换导致的熵的相应变化,从而深入了解了材料的热力学性质。研究结果阐明了包晶氧化物中结构修饰与磁性能之间错综复杂的关系,为了解 Ga 取代对 LaCrO3 的多功能影响提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
期刊最新文献
Investigation of Structural and Magnetic Properties of Lead-Free NCFO-BTO Composites Structural Stability, Electronic Structure, and Thermoelectric Properties for Half-Metallic Quaternary Heusler Compounds NdCoMnZ (Z = Al, In), PrCoMnZ (Z = Ga, In), and PrCoCrZ (Z = Al, Ga) Microstructural and Magnetic Properties of Nanocrystalline Nd-Fe-B Rare Earth Magnet Prepared by Spark Plasma Sintering Technique Rational Synthesis of NbSe2 and TaS3 Superconducting Nanowires The Impurity States in Different Shaped InxGa1-xAs/GaAs Quantum Wells under the Influence of Temperature and Hydrostatic Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1