Probabilistic Shoenfield Machines

Maksymilian Bujok, Adam Mata
{"title":"Probabilistic Shoenfield Machines","authors":"Maksymilian Bujok, Adam Mata","doi":"arxiv-2407.05777","DOIUrl":null,"url":null,"abstract":"This article provides the theoretical framework of Probabilistic Shoenfield\nMachines (PSMs), an extension of the classical Shoenfield Machine that models\nrandomness in the computation process. PSMs are brought in contexts where\ndeterministic computation is insufficient, such as randomized algorithms. By\nallowing transitions to multiple possible states with certain probabilities,\nPSMs can solve problems and make decisions based on probabilistic outcomes,\nhence expanding the variety of possible computations. We provide an overview of\nPSMs, detailing their formal definitions as well as the computation mechanism\nand their equivalence with Non-deterministic Shoenfield Machines (NSM).","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides the theoretical framework of Probabilistic Shoenfield Machines (PSMs), an extension of the classical Shoenfield Machine that models randomness in the computation process. PSMs are brought in contexts where deterministic computation is insufficient, such as randomized algorithms. By allowing transitions to multiple possible states with certain probabilities, PSMs can solve problems and make decisions based on probabilistic outcomes, hence expanding the variety of possible computations. We provide an overview of PSMs, detailing their formal definitions as well as the computation mechanism and their equivalence with Non-deterministic Shoenfield Machines (NSM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率肖菲尔德机器
本文提供了概率肖菲尔德机(Probabilistic ShoenfieldMachines,简称 PSM)的理论框架,它是经典肖菲尔德机的扩展,对计算过程中的随机性进行了建模。在确定性计算不足的情况下,比如随机算法中,PSM就会被使用。通过允许以一定概率过渡到多种可能状态,PSM 可以根据概率结果解决问题和做出决策,从而扩展了可能计算的种类。我们概述了 PSM,详细介绍了它们的形式定义、计算机制及其与非确定性肖菲尔德机器(NSM)的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1