Widely targeted metabolomics analysis of nutrient changes in a new black rice variety ‘Huamoxiang No.3’ (Oryza sativa L. var. Glutinosa Matsum) under different cooking modes
Yi Zhou, Xin Wu, Jinxin Shen, Daijun Yang, Qun Lu, Changjiang Long, Rui Liu
{"title":"Widely targeted metabolomics analysis of nutrient changes in a new black rice variety ‘Huamoxiang No.3’ (Oryza sativa L. var. Glutinosa Matsum) under different cooking modes","authors":"Yi Zhou, Xin Wu, Jinxin Shen, Daijun Yang, Qun Lu, Changjiang Long, Rui Liu","doi":"10.1002/cche.10812","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Black rice is rich in various nutrients, such as anthocyanins, which may undergo some changes during cooking. However, previous studies have been mainly focused on a single substance and paid less attention to the changes in overall nutrient components. Here, we performed widely targeted metabolomics analysis on the chemical compositional changes in a new black rice variety (‘Huamoxiang No.3’) under three cooking modes, including bottom heating (BH), induction heating (IH), and IH + pressure.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Among the detected 1458 metabolites, 276 and 108 metabolites were differential metabolites after cooking and in three cooking modes, respectively. Cooking increased the contents of most peptides, phenolic acids, and organic acid compounds but significantly decreased those of lipids and flavonoids, particularly anthocyanins. However, phenolic acids such as chlorogenic acid, erucic acid, and <i>p</i>-coumaric acid increased significantly, possibly due to the release of bound phenols and degradation of flavonoids to phenolic acids, such as thermal degradation of C3G to protocatechuic acid and among the three heating modes, the IH + pressure mode resulted in the most significant changes.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Although cooking reduced the content of flavonoids and anthocyanins, the increase in phenolic acids and other substances contributed to the healthy effect of cooked black rice, and the content of these active substances increased more significantly in the IH + pressure mode.</p>\n </section>\n </div>","PeriodicalId":9807,"journal":{"name":"Cereal Chemistry","volume":"101 5","pages":"1106-1117"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cereal Chemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cche.10812","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Black rice is rich in various nutrients, such as anthocyanins, which may undergo some changes during cooking. However, previous studies have been mainly focused on a single substance and paid less attention to the changes in overall nutrient components. Here, we performed widely targeted metabolomics analysis on the chemical compositional changes in a new black rice variety (‘Huamoxiang No.3’) under three cooking modes, including bottom heating (BH), induction heating (IH), and IH + pressure.
Results
Among the detected 1458 metabolites, 276 and 108 metabolites were differential metabolites after cooking and in three cooking modes, respectively. Cooking increased the contents of most peptides, phenolic acids, and organic acid compounds but significantly decreased those of lipids and flavonoids, particularly anthocyanins. However, phenolic acids such as chlorogenic acid, erucic acid, and p-coumaric acid increased significantly, possibly due to the release of bound phenols and degradation of flavonoids to phenolic acids, such as thermal degradation of C3G to protocatechuic acid and among the three heating modes, the IH + pressure mode resulted in the most significant changes.
Conclusion
Although cooking reduced the content of flavonoids and anthocyanins, the increase in phenolic acids and other substances contributed to the healthy effect of cooked black rice, and the content of these active substances increased more significantly in the IH + pressure mode.
期刊介绍:
Cereal Chemistry publishes high-quality papers reporting novel research and significant conceptual advances in genetics, biotechnology, composition, processing, and utilization of cereal grains (barley, maize, millet, oats, rice, rye, sorghum, triticale, and wheat), pulses (beans, lentils, peas, etc.), oilseeds, and specialty crops (amaranth, flax, quinoa, etc.). Papers advancing grain science in relation to health, nutrition, pet and animal food, and safety, along with new methodologies, instrumentation, and analysis relating to these areas are welcome, as are research notes and topical review papers.
The journal generally does not accept papers that focus on nongrain ingredients, technology of a commercial or proprietary nature, or that confirm previous research without extending knowledge. Papers that describe product development should include discussion of underlying theoretical principles.