Symplectic Quantization III: Non-relativistic Limit

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY Foundations of Physics Pub Date : 2024-07-09 DOI:10.1007/s10701-024-00783-5
Giacomo Gradenigo, Roberto Livi, Luca Salasnich
{"title":"Symplectic Quantization III: Non-relativistic Limit","authors":"Giacomo Gradenigo,&nbsp;Roberto Livi,&nbsp;Luca Salasnich","doi":"10.1007/s10701-024-00783-5","DOIUrl":null,"url":null,"abstract":"<div><p>First of all we shortly illustrate how the symplectic quantization scheme (Gradenigo and Livi, Found Phys 51(3):66, 2021) can be applied to a relativistic field theory with self-interaction. Taking inspiration from the stochastic quantization method by Parisi and Wu, this procedure is based on considering explicitly the role of an intrinsic time variable, associated with quantum fluctuations. The major part of this paper is devoted to showing how the symplectic quantization scheme can be extended to the non-relativistic limit for a Schrödinger-like field. Then we also discuss how one can obtain from this non-relativistic theory a linear Schrödinger equation for the single-particle wavefunction. This further passage is based on a suitable coarse-graining procedure, when self-interaction terms can be neglected, with respect to interactions with any external field. In the Appendix we complete our survey on symplectic quantization by discussing how this scheme applies to a non-relativistic particle under the action of a generic external potential.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"54 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10701-024-00783-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-024-00783-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

First of all we shortly illustrate how the symplectic quantization scheme (Gradenigo and Livi, Found Phys 51(3):66, 2021) can be applied to a relativistic field theory with self-interaction. Taking inspiration from the stochastic quantization method by Parisi and Wu, this procedure is based on considering explicitly the role of an intrinsic time variable, associated with quantum fluctuations. The major part of this paper is devoted to showing how the symplectic quantization scheme can be extended to the non-relativistic limit for a Schrödinger-like field. Then we also discuss how one can obtain from this non-relativistic theory a linear Schrödinger equation for the single-particle wavefunction. This further passage is based on a suitable coarse-graining procedure, when self-interaction terms can be neglected, with respect to interactions with any external field. In the Appendix we complete our survey on symplectic quantization by discussing how this scheme applies to a non-relativistic particle under the action of a generic external potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
交映量子化 III:非相对论极限
首先,我们简要说明交映量子化方案(Gradenigo 和 Livi,Found Phys 51(3):66, 2021)如何应用于具有自相互作用的相对论场论。从帕里西和吴的随机量子化方法中汲取灵感,这一过程基于明确考虑与量子波动相关的内在时间变量的作用。本文的主要内容是展示如何将交映量子化方案扩展到类似薛定谔场的非相对论极限。然后,我们还讨论了如何从这一非相对论中获得单粒子波函数的线性薛定谔方程。在与任何外部场的相互作用方面,当自相互作用项可以被忽略时,这一进一步的过程是基于适当的粗粒化程序。在附录中,我们将讨论这一方案如何应用于一般外部势作用下的非相对论粒子,从而完成我们对交映量子化的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
期刊最新文献
Dressing vs. Fixing: On How to Extract and Interpret Gauge-Invariant Content The Determinacy Problem in Quantum Mechanics Complementary Detector and State Preparation Error and Classicality in the Spin-j Einstein–Podolsky–Rosen–Bohm Experiment Conservation Laws in Quantum Database Search Reply to Hofer-Szabó: The PBR Theorem hasn’t been Saved
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1