{"title":"Numerical investigation of combustion characteristics of extended coherent flame model 3 zones (ECFM-3Z) in diesel engines running with biodiesel","authors":"Şeyma Karahan Özbilen, Emrullah Hakan Kaleli, Emir Aydar","doi":"10.1002/ep.14422","DOIUrl":null,"url":null,"abstract":"<p>This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C<sub>19</sub>H<sub>36</sub>O<sub>2</sub>) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO<sub>2</sub>) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NO<sub>x</sub>) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O<sub>2</sub>) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This research investigates the application of Extended Coherent Flame Model-3 Zones (ECFM-3Z) to assess the performance and emissions of rapeseed oil methyl ester (ROME). Experimental tests were carried out using a Lombardini 3 LD 350 model single-cylinder diesel engine, at 1600–3000 rpm with 200 rpm speed increments, under full load conditions. For numerical analysis, STAR-CD/ESICE software was employed. Methyl Oleate (C19H36O2) was predicted as the surrogate biodiesel based on Gas Chromatography (GC) analysis and average mass calculation. Notably, the numerical analysis revealed a remarkable similarity in brake power between the experimental and computational investigations. In the range of 2400–3000 rpm, the biodiesel's performance exhibited a maximum deviation of 5%, primarily attributed to pumping, thermal, and friction losses. In terms of emissions, carbon dioxide (CO2) emissions were consistent with the findings of the experimental study, with a maximum disparity of 10%. However, carbon monoxide (CO) emissions ranged from 57% to 65% lower than those observed in the experimental study, while nitrogen oxide (NOx) emissions exhibited a reduction of 63% to 84%. In contrast, oxygen (O2) emissions were notably higher, ranging from 93% to 117% compared to the experimental study, and exhaust temperatures were elevated by 33% to 49% in comparison to the experimental results.