High-visibility ghost imaging with phase-controlled discrete classical light sources

IF 1.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Chinese Physics B Pub Date : 2024-07-01 DOI:10.1088/1674-1056/ad4631
Xueying Wu, Yue Zhao, Liming Li
{"title":"High-visibility ghost imaging with phase-controlled discrete classical light sources","authors":"Xueying Wu, Yue Zhao, Liming Li","doi":"10.1088/1674-1056/ad4631","DOIUrl":null,"url":null,"abstract":"We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phase-correlated method. From theoretical and numerical simulations, we find the space translation invariance of the bunching effect is a key point for the ghost imaging realization. Experimentally, we create the orderly phase-correlated discrete sources which can realize high-visibility second-order ghost imaging than the result with chaotic sources. Moreover, some factors affecting the visibility of ghost image are discussed in detail.","PeriodicalId":10253,"journal":{"name":"Chinese Physics B","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1056/ad4631","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We take phase modulation to create discrete phase-controlled sources and realize the super-bunching effect by a phase-correlated method. From theoretical and numerical simulations, we find the space translation invariance of the bunching effect is a key point for the ghost imaging realization. Experimentally, we create the orderly phase-correlated discrete sources which can realize high-visibility second-order ghost imaging than the result with chaotic sources. Moreover, some factors affecting the visibility of ghost image are discussed in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相位控制离散经典光源进行高可见度鬼影成像
我们采用相位调制来创建离散相控源,并通过相位相关方法实现超束效应。通过理论和数值模拟,我们发现束流效应的空间平移不变性是实现鬼影成像的关键点。在实验中,我们创建了有序相位相关的离散源,与混沌源的结果相比,它能实现高可见度的二阶鬼影成像。此外,还详细讨论了影响鬼影可见度的一些因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Physics B
Chinese Physics B 物理-物理:综合
CiteScore
2.80
自引率
23.50%
发文量
15667
审稿时长
2.4 months
期刊介绍: Chinese Physics B is an international journal covering the latest developments and achievements in all branches of physics worldwide (with the exception of nuclear physics and physics of elementary particles and fields, which is covered by Chinese Physics C). It publishes original research papers and rapid communications reflecting creative and innovative achievements across the field of physics, as well as review articles covering important accomplishments in the frontiers of physics. Subject coverage includes: Condensed matter physics and the physics of materials Atomic, molecular and optical physics Statistical, nonlinear and soft matter physics Plasma physics Interdisciplinary physics.
期刊最新文献
Statistical properties of ideal photons in a 2D dye-filled spherical cap cavity Reconstruction algorithm for cross-waveband optical computing imaging Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire Molecular dynamics study on mechanical performance and deformation mechanisms in nanotwinned NiCo-based alloys with nano-precipitates under high temperatures Broadband Third-Order Optical Nonlinearities of Layered Franckeite Towards Mid-Infrared Regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1