Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-10 DOI:10.1002/adma.202406671
Xiaofeng Pan, Jiawei Pan, Xiang Li, Zhongkai Wang, Yonghao Ni, Qinhua Wang
{"title":"Tough Supramolecular Hydrogels Crafted via Lignin-Induced Self-Assembly.","authors":"Xiaofeng Pan, Jiawei Pan, Xiang Li, Zhongkai Wang, Yonghao Ni, Qinhua Wang","doi":"10.1002/adma.202406671","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻<sup>3</sup>, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202406671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Supramolecular hydrogels are typically assembled through weak non-covalent interactions, posing a significant challenge in achieving ultra strength. Developing a higher strength based on molecular/nanoscale engineering concepts is a potential improvement strategy. Herein, a super-tough supramolecular hydrogel is assembled by gradually diffusing lignosulfonate sodium (LS) into a polyvinyl alcohol (PVA) solution. Both simulations and analytical results indicate that the assembly and subsequent enhancement of the crosslinked network are primarily attributed to LS-induced formation and gradual densification of strong crystalline domains within the hydrogel. The optimized hydrogel exhibits impressive mechanical properties with tensile strength of ≈20 MPa, Young's modulus of ≈14 MPa, and toughness of ≈50 MJ m⁻3, making it the strongest lignin-PVA/polymer hydrogel known so far. Moreover, LS provides the supramolecular hydrogel with excellent low-temperature stability (<-60 °C), antibacterial, and UV-blocking capability (≈100%). Interestingly, the diffusion ability of LS is demonstrated for self-restructuring damaged supramolecular hydrogel, achieving 3D patterning on hydrogel surfaces, and enhancing the local strength of the freeze-thaw PVA hydrogel. The goal is to foster a versatile hydrogel platform by combining eco-friendly LS with biocompatible PVA, paving the way for innovation and interdisciplinarity in biomedicine, engineering materials, and forestry science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过木质素诱导的自组装制造出坚韧的超分子水凝胶。
超分子水凝胶通常是通过微弱的非共价相互作用组装而成的,这给实现超强强度带来了巨大挑战。基于分子/纳米工程概念开发更高强度是一种潜在的改进策略。本文通过将木质素磺酸钠(LS)逐渐扩散到聚乙烯醇(PVA)溶液中,组装出一种超强韧的超分子水凝胶。模拟和分析结果表明,交联网络的组装和随后的增强主要归功于木质素磺酸钠诱导的水凝胶内强结晶域的形成和逐渐致密化。优化后的水凝胶具有令人印象深刻的机械性能:拉伸强度≈20 兆帕,杨氏模量≈14 兆帕,韧性≈50 兆焦耳/立方米,是目前已知强度最高的木质素-PVA/聚合物水凝胶。此外,LS 还为超分子水凝胶提供了极佳的低温稳定性 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
On-Demand Crack Formation on DNA Film via Organic Solvent-Induced Dehydration. Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration. Stable n-Type Perylene Derivative Ladder Polymer with Antiambipolarity for Electrically Reconfigurable Organic Logic Gates. Realization of Fine-Tuning the Lattice Thermal Conductivity and Anharmonicity in Layered Semiconductors via Entropy Engineering. Interfacially Enhanced Superconductivity in Fe(Te,Se)/Bi4Te3 Heterostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1