Microbial Ecology of an Arctic Travertine Geothermal Spring: Implications for Biosignature Preservation and Astrobiology.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Astrobiology Pub Date : 2024-07-01 Epub Date: 2024-07-10 DOI:10.1089/ast.2023.0130
Ifeoma R Ugwuanyi, Andrew Steele, Mihaela Glamoclija
{"title":"Microbial Ecology of an Arctic Travertine Geothermal Spring: Implications for Biosignature Preservation and Astrobiology.","authors":"Ifeoma R Ugwuanyi, Andrew Steele, Mihaela Glamoclija","doi":"10.1089/ast.2023.0130","DOIUrl":null,"url":null,"abstract":"<p><p>Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO<sub>2</sub> degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2023.0130","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Jotun springs in Svalbard, Norway, is a rare warm environment in the Arctic that actively forms travertine. In this study, we assessed the microbial ecology of Jotun's active (aquatic) spring and dry spring transects. We evaluated the microbial preservation potential and mode, as well as the astrobiological relevance of the travertines to marginal carbonates mapped at Jezero Crater on Mars (the Mars 2020 landing site). Our results revealed that microbial communities exhibited spatial dynamics controlled by temperature, fluid availability, and geochemistry. Amorphous carbonates and silica precipitated within biofilm and on the surface of filamentous microorganisms. The water discharged at the source is warm, with near neutral pH, and undersaturated in silica. Hence, silicification possibly occurred through cooling, dehydration, and partially by a microbial presence or activities that promote silica precipitation. CO2 degassing and possible microbial contributions induced calcite precipitation and travertine formation. Jotun revealed that warm systems that are not very productive in carbonate formation may still produce significant carbonate buildups and provide settings favorable for fossilization through silicification and calcification. Our findings suggest that the potential for amorphous silica precipitation may be essential for Jezero Crater's marginal carbonates because it significantly increases the preservation potential of putative martian organisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
北极洞石地热泉的微生物生态学:对生物特征保存和天体生物学的影响。
挪威斯瓦尔巴特群岛的约顿泉是北极地区罕见的温暖环境,这里的洞石形成活跃。在这项研究中,我们评估了约顿活动(水生)泉和干泉横断面的微生物生态。我们评估了洞石的微生物保存潜力和模式,以及洞石与火星杰泽罗陨石坑(2020 年火星登陆点)边缘碳酸盐的天体生物学相关性。我们的研究结果表明,微生物群落的空间动态受温度、流体可用性和地球化学的控制。无定形碳酸盐和二氧化硅在生物膜内和丝状微生物表面沉淀。水源地排放的水温较高,pH 值接近中性,硅含量不足。因此,硅化可能是通过冷却、脱水以及部分微生物的存在或促进硅沉淀的活动发生的。二氧化碳脱气和可能的微生物作用促使方解石沉淀和石灰华形成。约顿揭示了碳酸盐形成生产力不高的温暖系统仍可能产生大量碳酸盐堆积,并通过硅化和钙化为化石提供有利环境。我们的研究结果表明,无定形二氧化硅沉淀的潜力可能是杰泽罗陨石坑边缘碳酸盐的关键所在,因为它大大提高了推定火星生物的保存潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
期刊最新文献
The Preservation and Spectral Detection of Historic Museum Specimen Microbial Mat Biosignatures Within Martian Dust: Lessons Learned for Mars Exploration and Sample Return. Variable and Large Losses of Diagnostic Biomarkers After Simulated Cosmic Radiation Exposure in Clay- and Carbonate-Rich Mars Analog Samples. Microbial Ecology of an Arctic Travertine Geothermal Spring: Implications for Biosignature Preservation and Astrobiology. Unveiling Challenging Microbial Fossil Biosignatures from Rio Tinto with Micro-to-Nanoscale Chemical and Ultrastructural Imaging. Building Identity and Community for Early Career Professionals in the Emerging Field of Astrobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1