Dosage and organic acid residue of MOG35-55 peptide influences immunopathology and development of BCG induced experimental autoimmune encephalomyelitis (EAE).
{"title":"Dosage and organic acid residue of MOG<sub>35-55</sub> peptide influences immunopathology and development of BCG induced experimental autoimmune encephalomyelitis (EAE).","authors":"Xiaoyan Han, Ying Wang, Kehua Zhang, Tao Na, Tingting Wu, Xiaofang Hao, Yuxuan Jin, Yuchun Wang, Haohan Wang, Shufang Meng","doi":"10.1538/expanim.24-0012","DOIUrl":null,"url":null,"abstract":"<p><p>Experimental autoimmune encephalomyelitis (EAE) serves as a model for studying multiple sclerosis, with immunization strategies utilizing MOG<sub>35-55</sub> peptide, emulsified in adjuvant enriched with mycobacterium tuberculosis (Mtb). This study examined the effects of Bacillus Calmette-Guérin (BCG) as an adjuvant, alongside the impact of MOG<sub>35-55</sub> peptide doses and their residual counter ions on EAE development. We found that BCG can be effectively used to induce EAE with similar incidence and severity as heat-killed H37Ra, contingent upon the appropriate MOG<sub>35-55</sub> peptide dose. Different immunization doses of MOG<sub>35-55</sub> peptide significantly affect EAE development, with higher doses leading to a paradoxical reduction in disease activity, probably due to peripheral tolerance mechanisms. Furthermore, doses of MOG<sub>35-55</sub> peptides with acetate showed a more pronounced effect on disease development compared to those containing trifluoroacetic acid (TFA), suggesting the potential influence of residual counter ions on EAE activity. We highlighted the feasibility of applying BCG to the establishment of EAE for the first time. Our findings emphasized the importance of MOG peptide dosage and composition in modulating EAE development, offering insights into the mechanisms of autoimmunity and tolerance. This could have implications for autoimmune disease research and the design of therapeutic strategies.</p>","PeriodicalId":12102,"journal":{"name":"Experimental Animals","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Animals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1538/expanim.24-0012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental autoimmune encephalomyelitis (EAE) serves as a model for studying multiple sclerosis, with immunization strategies utilizing MOG35-55 peptide, emulsified in adjuvant enriched with mycobacterium tuberculosis (Mtb). This study examined the effects of Bacillus Calmette-Guérin (BCG) as an adjuvant, alongside the impact of MOG35-55 peptide doses and their residual counter ions on EAE development. We found that BCG can be effectively used to induce EAE with similar incidence and severity as heat-killed H37Ra, contingent upon the appropriate MOG35-55 peptide dose. Different immunization doses of MOG35-55 peptide significantly affect EAE development, with higher doses leading to a paradoxical reduction in disease activity, probably due to peripheral tolerance mechanisms. Furthermore, doses of MOG35-55 peptides with acetate showed a more pronounced effect on disease development compared to those containing trifluoroacetic acid (TFA), suggesting the potential influence of residual counter ions on EAE activity. We highlighted the feasibility of applying BCG to the establishment of EAE for the first time. Our findings emphasized the importance of MOG peptide dosage and composition in modulating EAE development, offering insights into the mechanisms of autoimmunity and tolerance. This could have implications for autoimmune disease research and the design of therapeutic strategies.
期刊介绍:
The aim of this international journal is to accelerate progress in laboratory animal experimentation and disseminate relevant information in related areas through publication of peer reviewed Original papers and Review articles. The journal covers basic to applied biomedical research centering around use of experimental animals and also covers topics related to experimental animals such as technology, management, and animal welfare.