Glutamate acts on acid-sensing ion channels to worsen ischaemic brain injury.

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-07-01 Epub Date: 2024-07-10 DOI:10.1038/s41586-024-07684-7
Ke Lai, Iva Pritišanac, Zhen-Qi Liu, Han-Wei Liu, Li-Na Gong, Ming-Xian Li, Jian-Fei Lu, Xin Qi, Tian-Le Xu, Julie Forman-Kay, Hai-Bo Shi, Lu-Yang Wang, Shan-Kai Yin
{"title":"Glutamate acts on acid-sensing ion channels to worsen ischaemic brain injury.","authors":"Ke Lai, Iva Pritišanac, Zhen-Qi Liu, Han-Wei Liu, Li-Na Gong, Ming-Xian Li, Jian-Fei Lu, Xin Qi, Tian-Le Xu, Julie Forman-Kay, Hai-Bo Shi, Lu-Yang Wang, Shan-Kai Yin","doi":"10.1038/s41586-024-07684-7","DOIUrl":null,"url":null,"abstract":"<p><p>Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke<sup>1,2</sup>, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms<sup>3-7</sup>. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke<sup>4</sup>. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels<sup>4-7</sup>. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-07684-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke1,2, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms3-7. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke4. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels4-7. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谷氨酸作用于酸感应离子通道,加重缺血性脑损伤。
传统上,谷氨酸被认为是激活中风中 NMDAR(N-甲基-D-天冬氨酸受体)依赖性细胞死亡途径的第一信使1,2,但 NMDAR 拮抗剂的不成功临床试验表明还涉及其他机制3-7。在这里,我们发现谷氨酸及其结构类似物,包括 NMDAR 拮抗剂 L-AP5(又称 APV),能强效增强酸感应离子通道(ASIC)介导的电流,而 ASIC 与酸中毒诱导的中风神经毒性有关4。谷氨酸增加了 ASIC 对质子的亲和力及其开放概率,从而加剧了体外和体内模型中缺血性神经毒性。定点突变、结构建模和功能测试揭示了 ASIC1a 细胞外结构域中真正的谷氨酸结合腔。通过计算药物筛选发现了一种小分子 LK-2,它能与该空腔结合,取消谷氨酸对 ASIC 电流的依赖性增效,但不影响 NMDARs。在缺血性中风小鼠模型中,LK-2 可缩小梗死体积并改善感觉运动的恢复,这与 Asic1a 基因敲除或其他阳离子通道基因敲除小鼠的情况相似4-7。我们的结论是,谷氨酸作为 ASICs 的正异构调节剂可加剧神经毒性,而优先靶向 ASICs 上的谷氨酸结合位点(而非 NMDARs 上的结合位点)可能是开发中风治疗药物的策略,因为 NMDAR 拮抗剂不会产生精神副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Black holes made from light? Impossible, say physicists. How a space physicist is shaking up China's research funding. How neurons make a memory. The future of Mars Colony Two The pathogens that could spark the next pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1