Low-Power Fully Integrated 256-Channel Nanowire Electrode-on-Chip Neural Interface for Intracellular Electrophysiology.

Jun Wang, Ren Liu, Youngbin Tchoe, Alessio Paolo Buccino, Akshay Paul, Deborah Pre, Agnieszka D'Antonio-Chronowska, Frazer A Kelly, Anne G Bang, Chul Kim, Shadi Dayeh, Gert Cauwenberghs
{"title":"Low-Power Fully Integrated 256-Channel Nanowire Electrode-on-Chip Neural Interface for Intracellular Electrophysiology.","authors":"Jun Wang, Ren Liu, Youngbin Tchoe, Alessio Paolo Buccino, Akshay Paul, Deborah Pre, Agnieszka D'Antonio-Chronowska, Frazer A Kelly, Anne G Bang, Chul Kim, Shadi Dayeh, Gert Cauwenberghs","doi":"10.1109/TBCAS.2024.3407794","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular electrophysiology, a vital and versatile technique in cellular neuroscience, is typically conducted using the patch-clamp method. Despite its effectiveness, this method poses challenges due to its complexity and low throughput. The pursuit of multi-channel parallel neural intracellular recording has been a long-standing goal, yet achieving reliable and consistent scaling has been elusive because of several technological barriers. In this work, we introduce a micropower integrated circuit, optimized for scalable, high-throughput in vitro intrinsically intracellular electrophysiology. This system is capable of simultaneous recording and stimulation, implementing all essential functions such as signal amplification, acquisition, and control, with a direct interface to electrodes integrated on the chip. The electrophysiology system-on-chip (eSoC), fabricated in 180nm CMOS, measures 2.236 mm × 2.236 mm. It contains four 8 × 8 arrays of nanowire electrodes, each with a 50 μm pitch, placed over the top-metal layer on the chip surface, totaling 256 channels. Each channel has a power consumption of 0.47 μW, suitable for current stimulation and voltage recording, and covers 80 dB adjustable range at a sampling rate of 25 kHz. Experimental recordings with the eSoC from cultured neurons in vitro validate its functionality in accurately resolving chemically induced multi-unit intracellular electrical activity.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3407794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular electrophysiology, a vital and versatile technique in cellular neuroscience, is typically conducted using the patch-clamp method. Despite its effectiveness, this method poses challenges due to its complexity and low throughput. The pursuit of multi-channel parallel neural intracellular recording has been a long-standing goal, yet achieving reliable and consistent scaling has been elusive because of several technological barriers. In this work, we introduce a micropower integrated circuit, optimized for scalable, high-throughput in vitro intrinsically intracellular electrophysiology. This system is capable of simultaneous recording and stimulation, implementing all essential functions such as signal amplification, acquisition, and control, with a direct interface to electrodes integrated on the chip. The electrophysiology system-on-chip (eSoC), fabricated in 180nm CMOS, measures 2.236 mm × 2.236 mm. It contains four 8 × 8 arrays of nanowire electrodes, each with a 50 μm pitch, placed over the top-metal layer on the chip surface, totaling 256 channels. Each channel has a power consumption of 0.47 μW, suitable for current stimulation and voltage recording, and covers 80 dB adjustable range at a sampling rate of 25 kHz. Experimental recordings with the eSoC from cultured neurons in vitro validate its functionality in accurately resolving chemically induced multi-unit intracellular electrical activity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于细胞内电生理学的低功耗全集成 256 通道纳米线片上电极神经接口。
细胞内电生理学是细胞神经科学中一项重要的多功能技术,通常采用膜片钳法进行研究。尽管这种方法非常有效,但由于其复杂性和低通量,也带来了挑战。追求多通道并行神经细胞内记录是一个长期目标,但由于一些技术障碍,实现可靠和一致的扩展一直难以实现。在这项工作中,我们介绍了一种微功率集成电路,它针对可扩展、高通量的体外细胞内电生理学进行了优化。该系统能够同时进行记录和刺激,实现信号放大、采集和控制等所有基本功能,并具有与集成在芯片上的电极的直接接口。电生理学片上系统(eSoC)采用 180 纳米 CMOS 制造,尺寸为 2.236 毫米 × 2.236 毫米。它包含四个 8 × 8 的纳米线电极阵列,每个阵列的间距为 50 μm,放置在芯片表面的顶层金属层上,共有 256 个通道。每个通道的功耗为 0.47 μW,适用于电流刺激和电压记录,采样率为 25 kHz,可调范围为 80 dB。使用 eSoC 对体外培养的神经元进行的实验记录验证了它在精确分辨化学诱导的多单元细胞内电活动方面的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic sub-array selection-based energy-efficient localization and tracking method to power implanted medical devices in scattering heterogenous media employing ultrasound. A Reconfigurable Bidirectional Wireless Power and Full-Duplex Data Transceiver IC for Wearable Biomedical Applications. An Ultrasonic Transceiver for Non-Invasive Intracranial Pressure Sensing. BrainForest: Neuromorphic Multiplier-Less Bit-Serial Weight-Memory-Optimized 1024-Tree Brain-State Classification Processor. Fully Integrated Pneumatic-Free and Magnet-Free CMOS Ferrofluidic Platform for Comprehensive Biomolecular Processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1