Sijia Tan, Qiangqiang Li, Can Guo, Sumeng Chen, Afaf Kamal-Eldin, Gang Chen
{"title":"Reveal the mechanism of hepatic oxidative stress in mice induced by photo-oxidation milk using multi-omics analysis techniques.","authors":"Sijia Tan, Qiangqiang Li, Can Guo, Sumeng Chen, Afaf Kamal-Eldin, Gang Chen","doi":"10.1016/j.jare.2024.07.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health.</p><p><strong>Objectives: </strong>This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver.</p><p><strong>Methods: </strong>Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk.</p><p><strong>Results: </strong>A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis.</p><p><strong>Conclusion: </strong>This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.</p>","PeriodicalId":94063,"journal":{"name":"Journal of advanced research","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of advanced research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.07.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Photo-oxidation is recognized as a contributor to the deterioration of milk quality, posing potential safety hazards to human health. However, there has been limited investigation into the impact of consuming photo-oxidized milk on health.
Objectives: This study employs multi-omics analysis techniques to elucidate the mechanisms by which photo-oxidized milk induces oxidative stress in the liver.
Methods: Mouse model was used to determine the effect of the gavage administration of milk with varying degrees of photo-oxidation on the mouse liver. The damage degree was established by measuring serum markers indicative of oxidative stress, and with a subsequent histopathological examination of liver tissues. In addition, comprehensive metabolome, lipidome, and transcriptome analyses were conducted to elucidate the underlying molecular mechanisms of hepatic damage caused by photo-oxidized milk.
Results: A significant elevation in the oxidative stress levels and the presence of hepatocellular swelling and inflammation subsequent to the gavage administration of photo-oxidized milk to mice. Significant alterations in the levels of metabolites such as lumichrome, all-trans-retinal, L-valine, phosphatidylglycerol, and phosphatidylcholine within the hepatic tissue of mice. Moreover, photo-oxidized milk exerted a pronounced detrimental impact on the glycerophospholipid metabolism of mice liver. The peroxisome proliferator-activated receptors (PPAR) signaling pathway enrichment appreciated in the animals that consumed photo-oxidized milk further supports the substantial negative influence of photo-oxidized milk on hepatic lipid metabolism. Gene set enrichment and interaction analyses revealed that photo-oxidized milk inhibited the cytochrome P450 pathway in mice, while also affecting other pathways associated with cellular stress response and lipid biosynthesis.
Conclusion: This comprehensive study provides significant evidence regarding the potential health risks associated with photo-oxidized milk, particularly in terms of hepatic oxidative damage. It establishes a scientific foundation for assessing the safety of such milk and ensuring the quality of dairy products.