Characterization of pressure-dependent nonlinear bending behavior of yarns and its application in modeling the compression of 2D woven fabrics

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-07-05 DOI:10.1016/j.compositesa.2024.108346
Yiding Li, Weijie Zhang, Shibo Yan
{"title":"Characterization of pressure-dependent nonlinear bending behavior of yarns and its application in modeling the compression of 2D woven fabrics","authors":"Yiding Li,&nbsp;Weijie Zhang,&nbsp;Shibo Yan","doi":"10.1016/j.compositesa.2024.108346","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the pressure-dependent nonlinear bending behavior of yarns, which is essential for the application of the virtual fiber modeling (VFM) method in the mechanical analyses of fabrics. An experimental method, along with a theoretical model based on classical beam theory, is presented to characterize the varying bending stiffness of yarns under different pressures. A tailored beam user element is then developed, incorporating the nonlinear bending behavior and combined with a truss element to create a physics-based virtual fiber formulation. Utilizing this formulation, the original kinematic VFM method is extended for modeling the mechanical response of 2D woven fabrics under compression. The predicted results of the proposed model closely match the reported experiment, demonstrating the significance of introducing the nonlinear bending behavior of yarns. This method can be a valuable tool for the fabric compression process and generating realistic mesoscale geometries for textile composites.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24003439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the pressure-dependent nonlinear bending behavior of yarns, which is essential for the application of the virtual fiber modeling (VFM) method in the mechanical analyses of fabrics. An experimental method, along with a theoretical model based on classical beam theory, is presented to characterize the varying bending stiffness of yarns under different pressures. A tailored beam user element is then developed, incorporating the nonlinear bending behavior and combined with a truss element to create a physics-based virtual fiber formulation. Utilizing this formulation, the original kinematic VFM method is extended for modeling the mechanical response of 2D woven fabrics under compression. The predicted results of the proposed model closely match the reported experiment, demonstrating the significance of introducing the nonlinear bending behavior of yarns. This method can be a valuable tool for the fabric compression process and generating realistic mesoscale geometries for textile composites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纱线随压力变化的非线性弯曲特性及其在二维机织物压缩建模中的应用
本文研究了纱线随压力变化的非线性弯曲行为,这对于在织物机械分析中应用虚拟纤维建模(VFM)方法至关重要。本文介绍了一种实验方法以及基于经典梁理论的理论模型,用于描述纱线在不同压力下的弯曲刚度变化。然后,结合非线性弯曲行为开发了一种定制的梁用户元素,并与桁架元素相结合,创建了基于物理的虚拟纤维配方。利用这一公式,原有的运动虚拟纤维模型方法被扩展用于二维编织物在压缩下的机械响应建模。所建模型的预测结果与报告的实验结果非常吻合,证明了引入纱线非线性弯曲行为的重要性。该方法是织物压缩过程和生成纺织复合材料真实中尺度几何形状的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
An integrated approach to analyzing matrix-crack-induced stiffness degradation and medium leakage in linerless composite vessels Thermo-mechanical properties of shape-recoverable structural composites via vacuum-assisted resin transfer molding process and in-situ polymerization of poly (tert-butyl acrylate-co-acrylic acid) copolymer Towards yarn-to-yarn friction behavior in various architectures during the manufacturing of engineering woven fabrics Real-time Bayesian inversion in resin transfer moulding using neural surrogates Enhancing the mechanical performance of composite corners through microstructural optimization and geometrical design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1