Enhancing the image quality of prostate diffusion-weighted imaging in patients with prostate cancer through model-based deep learning reconstruction

IF 1.8 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Open Pub Date : 2024-07-05 DOI:10.1016/j.ejro.2024.100588
Noriko Nishioka , Noriyuki Fujima , Satonori Tsuneta , Masato Yoshikawa , Rina Kimura , Keita Sakamoto , Fumi Kato , Haruka Miyata , Hiroshi Kikuchi , Ryuji Matsumoto , Takashige Abe , Jihun Kwon , Masami Yoneyama , Kohsuke Kudo
{"title":"Enhancing the image quality of prostate diffusion-weighted imaging in patients with prostate cancer through model-based deep learning reconstruction","authors":"Noriko Nishioka ,&nbsp;Noriyuki Fujima ,&nbsp;Satonori Tsuneta ,&nbsp;Masato Yoshikawa ,&nbsp;Rina Kimura ,&nbsp;Keita Sakamoto ,&nbsp;Fumi Kato ,&nbsp;Haruka Miyata ,&nbsp;Hiroshi Kikuchi ,&nbsp;Ryuji Matsumoto ,&nbsp;Takashige Abe ,&nbsp;Jihun Kwon ,&nbsp;Masami Yoneyama ,&nbsp;Kohsuke Kudo","doi":"10.1016/j.ejro.2024.100588","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To evaluate the utility of model-based deep learning reconstruction in prostate diffusion-weighted imaging (DWI).</p></div><div><h3>Methods</h3><p>This retrospective study evaluated two prostate diffusion-weighted imaging (DWI) methods: deep learning reconstruction (DL-DWI) and traditional parallel imaging (PI-DWI). We examined 32 patients with radiologically diagnosed and histologically confirmed prostate cancer (PCa) lesions ≥10 mm. Image quality was evaluated both qualitatively (for overall quality, prostate conspicuity, and lesion conspicuity) and quantitatively, using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) for prostate tissue.</p></div><div><h3>Results</h3><p>In the qualitative evaluation, DL-DWI scored significantly higher than PI-DWI for all three parameters (p&lt;0.0001). In the quantitative analysis, DL-DWI showed significantly higher SNR and CNR values compared to PI-DWI (p&lt;0.0001). Both the prostate tissue and the lesions exhibited significantly higher ADC values in DL-DWI compared to PI-DWI (p&lt;0.0001, p=0.0014, respectively).</p></div><div><h3>Conclusion</h3><p>Model-based DL reconstruction enhanced both qualitative and quantitative aspects of image quality in prostate DWI. However, this study did not include comparisons with other DL-based methods, which is a limitation that warrants future research.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000431/pdfft?md5=b9b782fb0ca622347ec25b1eacf0e51d&pid=1-s2.0-S2352047724000431-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

To evaluate the utility of model-based deep learning reconstruction in prostate diffusion-weighted imaging (DWI).

Methods

This retrospective study evaluated two prostate diffusion-weighted imaging (DWI) methods: deep learning reconstruction (DL-DWI) and traditional parallel imaging (PI-DWI). We examined 32 patients with radiologically diagnosed and histologically confirmed prostate cancer (PCa) lesions ≥10 mm. Image quality was evaluated both qualitatively (for overall quality, prostate conspicuity, and lesion conspicuity) and quantitatively, using the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC) for prostate tissue.

Results

In the qualitative evaluation, DL-DWI scored significantly higher than PI-DWI for all three parameters (p<0.0001). In the quantitative analysis, DL-DWI showed significantly higher SNR and CNR values compared to PI-DWI (p<0.0001). Both the prostate tissue and the lesions exhibited significantly higher ADC values in DL-DWI compared to PI-DWI (p<0.0001, p=0.0014, respectively).

Conclusion

Model-based DL reconstruction enhanced both qualitative and quantitative aspects of image quality in prostate DWI. However, this study did not include comparisons with other DL-based methods, which is a limitation that warrants future research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于模型的深度学习重建提高前列腺癌患者前列腺弥散加权成像的图像质量
目的评估基于模型的深度学习重建在前列腺弥散加权成像(DWI)中的实用性。方法这项回顾性研究评估了两种前列腺弥散加权成像(DWI)方法:深度学习重建(DL-DWI)和传统平行成像(PI-DWI)。我们对 32 名经放射学诊断和组织学证实前列腺癌(PCa)病灶≥10 毫米的患者进行了检查。对图像质量进行了定性(整体质量、前列腺清晰度和病灶清晰度)和定量(前列腺组织的信噪比 (SNR)、对比度与噪声比 (CNR) 和表观弥散系数 (ADC))评估。结果在定性评估中,DL-DWI 在所有三个参数上的得分都明显高于 PI-DWI(p<0.0001)。在定量分析中,DL-DWI 的 SNR 和 CNR 值明显高于 PI-DWI(p<0.0001)。与 PI-DWI 相比,DL-DWI 中前列腺组织和病灶的 ADC 值都明显更高(分别为 p<0.0001 和 p=0.0014)。结论基于模型的 DL 重建提高了前列腺 DWI 图像质量的定性和定量方面,但本研究没有将其与其他基于 DL 的方法进行比较,这是一个局限性,值得在未来进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Radiology Open
European Journal of Radiology Open Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
4.10
自引率
5.00%
发文量
55
审稿时长
51 days
期刊最新文献
Deep learning model for diagnosis of thyroid nodules with size less than 1 cm: A multicenter, retrospective study MRI-based radiomics machine learning model to differentiate non-clear cell renal cell carcinoma from benign renal tumors Post-deployment performance of a deep learning algorithm for normal and abnormal chest X-ray classification: A study at visa screening centers in the United Arab Emirates Study on the classification of benign and malignant breast lesions using a multi-sequence breast MRI fusion radiomics and deep learning model True cost estimation of common imaging procedures for cost-effectiveness analysis - insights from a Singapore hospital emergency department
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1