Sadib Bin Kabir , Abdelmalek Bouazza , Mohammed Faizal
{"title":"Modifying ASTM E96 to assess water vapour transmission rates of geomembranes at high temperatures","authors":"Sadib Bin Kabir , Abdelmalek Bouazza , Mohammed Faizal","doi":"10.1016/j.geotexmem.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel methodology for assessing water vapour transmission rates (WVTRs) through geomembranes across a wide temperature range, from 20 °C to 90 °C. This expands upon the existing ASTM E96 standard, limited to temperatures up to 32 °C. The study focused on 1.5 mm thick high-density polyethylene (HDPE) and polyvinyl chloride-ethylene interpolymer alloy (PVC-EIA) geomembranes. The WVTR results—0.15 g/m<sup>2</sup>h at 25 °C for PVC-EIA and 0.02 g/m<sup>2</sup>h at 30 °C for HDPE—align closely with values reported in existing literature for similar geomembranes at lower temperatures, validating the methodology proposed in this study. Under elevated temperatures, the WVTR of PVC-EIA increased significantly to 4.7 g/m<sup>2</sup>h at 90 °C, while HDPE showed a slower increase, reaching only 0.4 g/m<sup>2</sup>h at the same temperature. This disparity is attributed to polymer composition and behaviour differences under high temperatures. This study's methodology provides a dependable approach for accurately measuring WVTR, including high temperatures relevant to various applications where such data is currently lacking.</p></div>","PeriodicalId":55096,"journal":{"name":"Geotextiles and Geomembranes","volume":"52 5","pages":"Pages 1054-1058"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotextiles and Geomembranes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266114424000670","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel methodology for assessing water vapour transmission rates (WVTRs) through geomembranes across a wide temperature range, from 20 °C to 90 °C. This expands upon the existing ASTM E96 standard, limited to temperatures up to 32 °C. The study focused on 1.5 mm thick high-density polyethylene (HDPE) and polyvinyl chloride-ethylene interpolymer alloy (PVC-EIA) geomembranes. The WVTR results—0.15 g/m2h at 25 °C for PVC-EIA and 0.02 g/m2h at 30 °C for HDPE—align closely with values reported in existing literature for similar geomembranes at lower temperatures, validating the methodology proposed in this study. Under elevated temperatures, the WVTR of PVC-EIA increased significantly to 4.7 g/m2h at 90 °C, while HDPE showed a slower increase, reaching only 0.4 g/m2h at the same temperature. This disparity is attributed to polymer composition and behaviour differences under high temperatures. This study's methodology provides a dependable approach for accurately measuring WVTR, including high temperatures relevant to various applications where such data is currently lacking.
期刊介绍:
The range of products and their applications has expanded rapidly over the last decade with geotextiles and geomembranes being specified world wide. This rapid growth is paralleled by a virtual explosion of technology. Current reference books and even manufacturers' sponsored publications tend to date very quickly and the need for a vehicle to bring together and discuss the growing body of technology now available has become evident.
Geotextiles and Geomembranes fills this need and provides a forum for the dissemination of information amongst research workers, designers, users and manufacturers. By providing a growing fund of information the journal increases general awareness, prompts further research and assists in the establishment of international codes and regulations.