Fabrication of a high-temperature resistant and water-soluble sizing agent to significantly improve the interfacial properties of carbon fiber reinforced epoxy composites

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING Composites Part A: Applied Science and Manufacturing Pub Date : 2024-07-06 DOI:10.1016/j.compositesa.2024.108344
Baowei Qiu, Youquan Ling, Xiwen Gu, Lei Wang, Fei Chen, Shengtai Zhou, Huawei Zou, Mei Liang
{"title":"Fabrication of a high-temperature resistant and water-soluble sizing agent to significantly improve the interfacial properties of carbon fiber reinforced epoxy composites","authors":"Baowei Qiu,&nbsp;Youquan Ling,&nbsp;Xiwen Gu,&nbsp;Lei Wang,&nbsp;Fei Chen,&nbsp;Shengtai Zhou,&nbsp;Huawei Zou,&nbsp;Mei Liang","doi":"10.1016/j.compositesa.2024.108344","DOIUrl":null,"url":null,"abstract":"<div><p>Applying suitable sizing agents is effective in improving the interfacial performance of carbon fiber reinforced composites (CFRPs). However, the poor thermal stability of conventional epoxy-based sizing agent limits their application at elevated temperatures for preparing advanced CFRPs. The question could lead to interfacial damage of composites at high temperatures, thus deteriorating their mechanical properties. In this work, diethanolamine (DEA) was selected to modify E51 resin to obtain a high-temperature resistant sizing agent (E51@DEA). The decomposition temperature of E51@DEA was 320 °C, which was 140 °C higher than that of E51. Furthermore, the resultant composites treated by E51@DEA 2 % showed robust interfacial performance (ILSS = 74.32 MPa, IFSS = 100.70 MPa), which was both increased by about 25 % compared to unmodified samples. In addition, the modified fiber could completely retain their interfacial reinforcement after treatment at 300 °C for 4 h. The prepared composites combined excellent thermal and interfacial properties, further expanding the application range of CFRPs.</p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X24003415","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Applying suitable sizing agents is effective in improving the interfacial performance of carbon fiber reinforced composites (CFRPs). However, the poor thermal stability of conventional epoxy-based sizing agent limits their application at elevated temperatures for preparing advanced CFRPs. The question could lead to interfacial damage of composites at high temperatures, thus deteriorating their mechanical properties. In this work, diethanolamine (DEA) was selected to modify E51 resin to obtain a high-temperature resistant sizing agent (E51@DEA). The decomposition temperature of E51@DEA was 320 °C, which was 140 °C higher than that of E51. Furthermore, the resultant composites treated by E51@DEA 2 % showed robust interfacial performance (ILSS = 74.32 MPa, IFSS = 100.70 MPa), which was both increased by about 25 % compared to unmodified samples. In addition, the modified fiber could completely retain their interfacial reinforcement after treatment at 300 °C for 4 h. The prepared composites combined excellent thermal and interfacial properties, further expanding the application range of CFRPs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备耐高温水溶性施胶剂,显著改善碳纤维增强环氧树脂复合材料的界面性能
使用合适的施胶剂可以有效改善碳纤维增强复合材料(CFRP)的界面性能。然而,传统环氧基施胶剂的热稳定性较差,限制了它们在高温下制备先进 CFRP 的应用。这一问题可能会导致复合材料在高温下发生界面破坏,从而降低其机械性能。本研究选用二乙醇胺(DEA)对 E51 树脂进行改性,从而获得一种耐高温施胶剂(E51@DEA)。E51@DEA 的分解温度为 320 ℃,比 E51 高 140 ℃。此外,经 2 % E51@DEA 处理的复合材料显示出良好的界面性能(ILSS = 74.32 MPa,IFSS = 100.70 MPa),与未改性样品相比,界面性能均提高了约 25%。此外,在 300 °C 下处理 4 小时后,改性纤维可完全保持其界面加固性能。所制备的复合材料兼具优异的热性能和界面性能,进一步扩大了 CFRP 的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
期刊最新文献
An integrated approach to analyzing matrix-crack-induced stiffness degradation and medium leakage in linerless composite vessels Thermo-mechanical properties of shape-recoverable structural composites via vacuum-assisted resin transfer molding process and in-situ polymerization of poly (tert-butyl acrylate-co-acrylic acid) copolymer Towards yarn-to-yarn friction behavior in various architectures during the manufacturing of engineering woven fabrics Real-time Bayesian inversion in resin transfer moulding using neural surrogates Enhancing the mechanical performance of composite corners through microstructural optimization and geometrical design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1