Advancing fractured geothermal system modeling with artificial neural network and bidirectional gated recurrent unit

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-07-06 DOI:10.1016/j.apenergy.2024.123826
Yuwei Li , Genbo Peng , Tong Du , Liangliang Jiang , Xiang-Zhao Kong
{"title":"Advancing fractured geothermal system modeling with artificial neural network and bidirectional gated recurrent unit","authors":"Yuwei Li ,&nbsp;Genbo Peng ,&nbsp;Tong Du ,&nbsp;Liangliang Jiang ,&nbsp;Xiang-Zhao Kong","doi":"10.1016/j.apenergy.2024.123826","DOIUrl":null,"url":null,"abstract":"<div><p>Geothermal energy plays a pivotal role in the global energy transition towards carbon-neutrality, providing a sustainable, renewable, and abundant source of clean energy in the fight against climate change. Despite advancements, the optimal engineering of geothermal systems and energy extraction remains challenging, particularly in accurately predicting production temperatures. Here, we present an innovative numerical approach using a hybrid neural network that merges Artificial Neural Network (ANN) and Bidirectional Gated Recurrent Unit (BiGRU). With this hybrid network, we comprehensively assess 22 influential factors, including construction parameters, physical parameters, and well layout, which influence thermal breakthrough time and production temperature across varying fracture density. While the ANN captures the nonlinear interplay between static constraints and thermal breakthrough time, the BiGRU adeptly handles the temporal intricacies of production temperature. We examine the impact of ANN parameters on model performance, in comparison with conventional temporal models like Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), and BiGRU. Our findings reveal that augmenting hidden layers and neurons in ANN enhances its capacity to model intricate nonlinear processes, albeit with a risk of overfitting. Notably, the relu activation function emerges as optimal for managing nonlinear processes, while BiGRU excels over RNN, GRU, and LSTM models in forecasting production temperature of fractured geothermal systems, owing to its ability to extract implicit information from time series across historical and future trajectories. Crucially, the prediction uncertainty, measured by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), remains within 0.15, underscoring the precision and efficacy of our hybrid approach in forecasting geothermal energy extraction. This study presents a significant stride towards a high-precision and efficient predictive framework crucial for advancing geothermal energy extraction in the broader context of renewable energy transition endeavors.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924012091","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Geothermal energy plays a pivotal role in the global energy transition towards carbon-neutrality, providing a sustainable, renewable, and abundant source of clean energy in the fight against climate change. Despite advancements, the optimal engineering of geothermal systems and energy extraction remains challenging, particularly in accurately predicting production temperatures. Here, we present an innovative numerical approach using a hybrid neural network that merges Artificial Neural Network (ANN) and Bidirectional Gated Recurrent Unit (BiGRU). With this hybrid network, we comprehensively assess 22 influential factors, including construction parameters, physical parameters, and well layout, which influence thermal breakthrough time and production temperature across varying fracture density. While the ANN captures the nonlinear interplay between static constraints and thermal breakthrough time, the BiGRU adeptly handles the temporal intricacies of production temperature. We examine the impact of ANN parameters on model performance, in comparison with conventional temporal models like Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), and BiGRU. Our findings reveal that augmenting hidden layers and neurons in ANN enhances its capacity to model intricate nonlinear processes, albeit with a risk of overfitting. Notably, the relu activation function emerges as optimal for managing nonlinear processes, while BiGRU excels over RNN, GRU, and LSTM models in forecasting production temperature of fractured geothermal systems, owing to its ability to extract implicit information from time series across historical and future trajectories. Crucially, the prediction uncertainty, measured by Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), remains within 0.15, underscoring the precision and efficacy of our hybrid approach in forecasting geothermal energy extraction. This study presents a significant stride towards a high-precision and efficient predictive framework crucial for advancing geothermal energy extraction in the broader context of renewable energy transition endeavors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人工神经网络和双向门控递归单元推进断裂地热系统建模
地热能在全球能源向碳中性过渡的过程中发挥着举足轻重的作用,为应对气候变化提供了可持续、可再生和丰富的清洁能源。尽管取得了进步,但地热系统和能源提取的优化工程仍具有挑战性,尤其是在准确预测生产温度方面。在这里,我们提出了一种创新的数值方法,即使用混合神经网络,将人工神经网络(ANN)和双向门控递归单元(BiGRU)融合在一起。利用这种混合网络,我们全面评估了 22 个影响因素,包括施工参数、物理参数和油井布局,这些因素会在不同的压裂密度下影响热突破时间和生产温度。ANN捕捉到了静态约束和热突破时间之间的非线性相互作用,而BiGRU则能巧妙地处理生产温度在时间上的复杂性。与循环神经网络 (RNN)、长短期记忆 (LSTM)、门循环单元 (GRU) 和 BiGRU 等传统时间模型相比,我们研究了 ANN 参数对模型性能的影响。我们的研究结果表明,增强 ANN 的隐藏层和神经元可提高其模拟复杂非线性过程的能力,尽管存在过度拟合的风险。值得注意的是,relu 激活函数是管理非线性过程的最佳方法,而 BiGRU 在预测断裂地热系统的生产温度方面优于 RNN、GRU 和 LSTM 模型,这是因为 BiGRU 能够从跨越历史和未来轨迹的时间序列中提取隐含信息。最重要的是,用均方根误差(RMSE)和平均绝对误差(MAE)测量的预测不确定性保持在 0.15 以内,这突出表明了我们的混合方法在预测地热能源提取方面的精确性和有效性。这项研究在建立高精度、高效率的预测框架方面迈出了重要一步,这对于在可再生能源转型的大背景下推进地热能源开采至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Editorial Board Effects of building load characteristics on heating performance of the medium-deep U-type borehole heat exchanger coupled heat pumps: A coupled dynamic simulation Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process Decentralized distributionally robust chance-constrained operation of integrated electricity and hydrogen transportation networks Experimental and kinetic studies on the photocatalysis of UV–vis light irradiation for low concentrations of the methane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1