A data-driven solution for intelligent power allocation of connected hybrid electric vehicles inspired by offline deep reinforcement learning in V2X scenario

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-07-08 DOI:10.1016/j.apenergy.2024.123861
Zegong Niu, Hongwen He
{"title":"A data-driven solution for intelligent power allocation of connected hybrid electric vehicles inspired by offline deep reinforcement learning in V2X scenario","authors":"Zegong Niu,&nbsp;Hongwen He","doi":"10.1016/j.apenergy.2024.123861","DOIUrl":null,"url":null,"abstract":"<div><p>The proper power allocation between multiple energy sources is crucial for hybrid electric vehicles to guarantee energy economy. As a data-driven technique, offline deep reinforcement learning (DRL) solely exploits existing data to train energy management strategy (EMS), which becomes a promising solution for intelligent power allocation. However, current offline DRL-based strategies put high demands on the quality of datasets, and it is difficult to obtain numerous high-quality samples in practice. Thus, a bootstrapping error accumulation reduction (BEAR)-based strategy is proposed to enhance the energy-saving performance with different kinds of datasets. After that, based on the advanced V2X technology, a data-driven energy management updating framework is proposed to improve both fuel economy and adaptability of EMS via multi-updating. Specifically, the framework deploys multiple V2X-based buses to collect real-time information, and updates the strategy periodically making full use of offline data. The results show that the proposed BEAR-based EMS performs better than state-of-the-art offline EMSs in terms of fuel economy, especially realizing an improvement of 2.25% when training with mixed datasets. It is also validated that the offline EMS with the updating mechanism can reduce energy costs step by step under two different kinds of initial datasets.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924012443","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The proper power allocation between multiple energy sources is crucial for hybrid electric vehicles to guarantee energy economy. As a data-driven technique, offline deep reinforcement learning (DRL) solely exploits existing data to train energy management strategy (EMS), which becomes a promising solution for intelligent power allocation. However, current offline DRL-based strategies put high demands on the quality of datasets, and it is difficult to obtain numerous high-quality samples in practice. Thus, a bootstrapping error accumulation reduction (BEAR)-based strategy is proposed to enhance the energy-saving performance with different kinds of datasets. After that, based on the advanced V2X technology, a data-driven energy management updating framework is proposed to improve both fuel economy and adaptability of EMS via multi-updating. Specifically, the framework deploys multiple V2X-based buses to collect real-time information, and updates the strategy periodically making full use of offline data. The results show that the proposed BEAR-based EMS performs better than state-of-the-art offline EMSs in terms of fuel economy, especially realizing an improvement of 2.25% when training with mixed datasets. It is also validated that the offline EMS with the updating mechanism can reduce energy costs step by step under two different kinds of initial datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 V2X 场景下,受离线深度强化学习启发的数据驱动型互联混合动力电动汽车智能功率分配解决方案
对于混合动力电动汽车来说,如何在多种能源之间进行合理的功率分配以保证能源的经济性至关重要。作为一种数据驱动技术,离线深度强化学习(DRL)完全利用现有数据来训练能量管理策略(EMS),成为一种很有前途的智能功率分配解决方案。然而,目前基于离线 DRL 的策略对数据集的质量要求很高,在实际应用中很难获得大量高质量的样本。因此,本文提出了一种基于引导误差累积减少(BEAR)的策略,以提高不同类型数据集的节能性能。随后,基于先进的 V2X 技术,提出了一种数据驱动的能源管理更新框架,通过多重更新提高 EMS 的燃油经济性和适应性。具体来说,该框架部署了多辆基于 V2X 的总线来收集实时信息,并充分利用离线数据定期更新策略。结果表明,基于 BEAR 的 EMS 在燃油经济性方面的表现优于最先进的离线 EMS,尤其是在使用混合数据集进行训练时,其燃油经济性提高了 2.25%。同时还验证了在两种不同的初始数据集下,具有更新机制的离线 EMS 可以逐步降低能源成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Editorial Board Effects of building load characteristics on heating performance of the medium-deep U-type borehole heat exchanger coupled heat pumps: A coupled dynamic simulation Physics informed integral neural network for dynamic modelling of solvent-based post-combustion CO2 capture process Decentralized distributionally robust chance-constrained operation of integrated electricity and hydrogen transportation networks Experimental and kinetic studies on the photocatalysis of UV–vis light irradiation for low concentrations of the methane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1