Modulation of plant polyamine and ethylene biosynthesis; and brassinosteroid signaling during Bacillus endophyticus J13-mediated salinity tolerance in Arabidopsis thaliana
{"title":"Modulation of plant polyamine and ethylene biosynthesis; and brassinosteroid signaling during Bacillus endophyticus J13-mediated salinity tolerance in Arabidopsis thaliana","authors":"P.T. Nikhil, Umema Faiz, Raunak Sharma, Sridev Mohapatra","doi":"10.1016/j.jplph.2024.154304","DOIUrl":null,"url":null,"abstract":"<div><p>Salinity stress adversely impacts plant growth and development. Plant growth-promoting rhizobacteria (PGPR) are known to confer salinity stress tolerance in plants through several mechanisms. Here, we report the role of an abiotic stress-tolerant PGPR strain, <em>Bacillus endophyticus</em> J13, in promoting salinity stress tolerance in <em>Arabidopsis thaliana</em>, by elucidating its impact on physiological responses, polyamine (PA) and ethylene biosynthesis, and brassinosteroid signaling. Physiological analysis revealed that J13 can significantly improve the overall plant growth under salt stress by increasing the biomass, relative water content, and chlorophyll content, decreasing membrane damage and lipid peroxidation, and modulating proline homeostasis in plants. Evaluation of shoot polyamine levels upon J13 inoculation revealed an overall decrease in the levels of the three major PAs, putrescine (Put), spermidine (Spd), and spermine (Spm), under non-stressed conditions. Salt stress significantly increased the levels of Put and Spm, while decreasing the Spd levels in the plants. J13 inoculation under salt-stressed conditions, significantly decreased the Put levels, bringing them closer to those of the untreated control plants, whereas Spd and Spm levels did not change relative to the non-inoculated salt-stressed plants. The modulation of PA levels was accompanied by changes in the expressions of key PA biosynthetic genes under all treatments. Among the ethylene biosynthetic genes that we studied, <em>ACS1</em> was induced by J13 inoculation under salt stress. J13 inoculation under salt stress resulted in the modulation of the expressions of BR-signaling genes, upregulating the expressions of the positive regulators of BR-signaling (<em>BZR1</em> and <em>BES2</em>) and downregulating that of the negative regulator (<em>BIN2</em>). Our results provide a new avenue for J13-mediated salt stress amelioration in Arabidopsis, via tight control of polyamine and ethylene biosynthesis and enhanced brassinosteroid signaling.</p></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"301 ","pages":"Article 154304"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001354","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Salinity stress adversely impacts plant growth and development. Plant growth-promoting rhizobacteria (PGPR) are known to confer salinity stress tolerance in plants through several mechanisms. Here, we report the role of an abiotic stress-tolerant PGPR strain, Bacillus endophyticus J13, in promoting salinity stress tolerance in Arabidopsis thaliana, by elucidating its impact on physiological responses, polyamine (PA) and ethylene biosynthesis, and brassinosteroid signaling. Physiological analysis revealed that J13 can significantly improve the overall plant growth under salt stress by increasing the biomass, relative water content, and chlorophyll content, decreasing membrane damage and lipid peroxidation, and modulating proline homeostasis in plants. Evaluation of shoot polyamine levels upon J13 inoculation revealed an overall decrease in the levels of the three major PAs, putrescine (Put), spermidine (Spd), and spermine (Spm), under non-stressed conditions. Salt stress significantly increased the levels of Put and Spm, while decreasing the Spd levels in the plants. J13 inoculation under salt-stressed conditions, significantly decreased the Put levels, bringing them closer to those of the untreated control plants, whereas Spd and Spm levels did not change relative to the non-inoculated salt-stressed plants. The modulation of PA levels was accompanied by changes in the expressions of key PA biosynthetic genes under all treatments. Among the ethylene biosynthetic genes that we studied, ACS1 was induced by J13 inoculation under salt stress. J13 inoculation under salt stress resulted in the modulation of the expressions of BR-signaling genes, upregulating the expressions of the positive regulators of BR-signaling (BZR1 and BES2) and downregulating that of the negative regulator (BIN2). Our results provide a new avenue for J13-mediated salt stress amelioration in Arabidopsis, via tight control of polyamine and ethylene biosynthesis and enhanced brassinosteroid signaling.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.