René Groh , Jie Yu Li , Nicole Y.K. Li-Jessen , Andreas M. Kist
{"title":"ANNOTE: Annotation of time-series events","authors":"René Groh , Jie Yu Li , Nicole Y.K. Li-Jessen , Andreas M. Kist","doi":"10.1016/j.simpa.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><p>Supervised training of machine learning models heavily relies on accurate annotations. However, data annotation, such as in the case of time-series signals, poses a labor-intensive challenge. Here, we present a new annotation software, Annotation of Time-series Events (ANNOTE), to handle longitudinal, time-series signals as in highly complex physiological events. ANNOTE offers flexibility and adaptability to streamline the annotation process through an intuitive user interface, effectively meeting diverse annotation needs. Users can annotate regions of interest with precision down to a single data point. ANNOTE presents a useful tool to support researchers in handling time-series biomedical data for downstream machine-learning analyses.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"21 ","pages":"Article 100679"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000678/pdfft?md5=264eb9466e32bc08ed480071e4ae3159&pid=1-s2.0-S2665963824000678-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Supervised training of machine learning models heavily relies on accurate annotations. However, data annotation, such as in the case of time-series signals, poses a labor-intensive challenge. Here, we present a new annotation software, Annotation of Time-series Events (ANNOTE), to handle longitudinal, time-series signals as in highly complex physiological events. ANNOTE offers flexibility and adaptability to streamline the annotation process through an intuitive user interface, effectively meeting diverse annotation needs. Users can annotate regions of interest with precision down to a single data point. ANNOTE presents a useful tool to support researchers in handling time-series biomedical data for downstream machine-learning analyses.