Moore on Chip Scaling: Scaling Compute to Satiate AI's Appetite Will Take Extreme Measures

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Spectrum Pub Date : 2024-07-09 DOI:10.1109/MSPEC.2024.10589680
Harry Goldstein
{"title":"Moore on Chip Scaling: Scaling Compute to Satiate AI's Appetite Will Take Extreme Measures","authors":"Harry Goldstein","doi":"10.1109/MSPEC.2024.10589680","DOIUrl":null,"url":null,"abstract":"Fifty years ago, DRAM inventor and IEEE Medal of Honor recipient Robert Dennard created what essentially became the semiconductor industry's path to perpetually increasing transistor density and chip performance. That path became known as Dennard scaling, and it helped codify Gordon Moore's postulate about device dimensions shrinking by half every 18 to 24 months. For decades it compelled engineers to push the physical limits of semiconductor devices.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 7","pages":"2-2"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Spectrum","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10589680/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Fifty years ago, DRAM inventor and IEEE Medal of Honor recipient Robert Dennard created what essentially became the semiconductor industry's path to perpetually increasing transistor density and chip performance. That path became known as Dennard scaling, and it helped codify Gordon Moore's postulate about device dimensions shrinking by half every 18 to 24 months. For decades it compelled engineers to push the physical limits of semiconductor devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
芯片上的摩尔扩展:扩大计算规模以满足人工智能的胃口需要采取极端措施
五十年前,DRAM 发明者、IEEE 荣誉奖章获得者罗伯特-邓纳(Robert Dennard)开创了半导体行业不断提高晶体管密度和芯片性能的道路。这条道路被称为 "邓纳缩放",它帮助戈登-摩尔(Gordon Moore)实现了器件尺寸每 18 到 24 个月缩小一半的假设。几十年来,它迫使工程师们不断挑战半导体器件的物理极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Spectrum
IEEE Spectrum 工程技术-工程:电子与电气
CiteScore
2.50
自引率
0.00%
发文量
254
审稿时长
4-8 weeks
期刊介绍: IEEE Spectrum Magazine, the flagship publication of the IEEE, explores the development, applications and implications of new technologies. It anticipates trends in engineering, science, and technology, and provides a forum for understanding, discussion and leadership in these areas. IEEE Spectrum is the world''s leading engineering and scientific magazine. Read by over 300,000 engineers worldwide, Spectrum provides international coverage of all technical issues and advances in computers, communications, and electronics. Written in clear, concise language for the non-specialist, Spectrum''s high editorial standards and worldwide resources ensure technical accuracy and state-of-the-art relevance.
期刊最新文献
News Front Cover Advertisement Advertisement Advertisement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1