Is the Future of Moore's Law in a Particle Accelerator?: Wiggling Electrons Could Turbocharge EUV Lithography

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Spectrum Pub Date : 2024-07-09 DOI:10.1109/MSPEC.2024.10589684
John Boyd
{"title":"Is the Future of Moore's Law in a Particle Accelerator?: Wiggling Electrons Could Turbocharge EUV Lithography","authors":"John Boyd","doi":"10.1109/MSPEC.2024.10589684","DOIUrl":null,"url":null,"abstract":"As Intel, Samsung, TSMC, and Japan's upcoming advanced foundry Rapidus each make their separate preparations to cram more and more transistors into every square millimeter of silicon, one thing they all have in common is that the extreme ultraviolet (EUV) lithography technology underpinning their efforts is extremely complex, extremely expensive, and extremely costly to operate. A prime reason is that the source of this system's 13.5-nanometer light is the precise and costly process of blasting flying droplets of molten tin with the most powerful commercial lasers on the planet.","PeriodicalId":13249,"journal":{"name":"IEEE Spectrum","volume":"61 7","pages":"28-33"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Spectrum","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10589684/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As Intel, Samsung, TSMC, and Japan's upcoming advanced foundry Rapidus each make their separate preparations to cram more and more transistors into every square millimeter of silicon, one thing they all have in common is that the extreme ultraviolet (EUV) lithography technology underpinning their efforts is extremely complex, extremely expensive, and extremely costly to operate. A prime reason is that the source of this system's 13.5-nanometer light is the precise and costly process of blasting flying droplets of molten tin with the most powerful commercial lasers on the planet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摩尔定律的未来在粒子加速器中吗? 摆动的电子可为超紫外光刻技术提供动力
英特尔、三星、台积电和日本即将成立的先进晶圆代工厂 Rapidus 都在为在每平方毫米的硅片中塞进越来越多的晶体管做着各自的准备,但它们都有一个共同点,那就是支撑它们努力的极紫外光刻(EUV)技术极其复杂、极其昂贵,而且操作成本极高。其中一个主要原因是,该系统的 13.5 纳米光源是用地球上最强大的商用激光器喷射熔融锡滴的精确而昂贵的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Spectrum
IEEE Spectrum 工程技术-工程:电子与电气
CiteScore
2.50
自引率
0.00%
发文量
254
审稿时长
4-8 weeks
期刊介绍: IEEE Spectrum Magazine, the flagship publication of the IEEE, explores the development, applications and implications of new technologies. It anticipates trends in engineering, science, and technology, and provides a forum for understanding, discussion and leadership in these areas. IEEE Spectrum is the world''s leading engineering and scientific magazine. Read by over 300,000 engineers worldwide, Spectrum provides international coverage of all technical issues and advances in computers, communications, and electronics. Written in clear, concise language for the non-specialist, Spectrum''s high editorial standards and worldwide resources ensure technical accuracy and state-of-the-art relevance.
期刊最新文献
News Front Cover Advertisement Advertisement Advertisement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1