Carolyn A. Crow, Cynthia Tong, Timmons M. Erickson, Desmond E. Moser, Aaron S. Bell, Nigel M. Kelly, Tabb C. Prissel, Brendt C. Hyde
{"title":"Impact origin of lunar zircon melt inclusions in Apollo impact melt breccia 14311","authors":"Carolyn A. Crow, Cynthia Tong, Timmons M. Erickson, Desmond E. Moser, Aaron S. Bell, Nigel M. Kelly, Tabb C. Prissel, Brendt C. Hyde","doi":"10.1111/maps.14162","DOIUrl":null,"url":null,"abstract":"<p>Investigations of trapped melt inclusions in minerals can yield insights into the compositions and conditions of parent magmas. These insights are particularly important for detrital grains like many of the lunar zircons found in samples returned by the Apollo missions. However, unlike their terrestrial counterparts, lunar zircons have potentially been exposed to billions of years of impact bombardment. Samples from terrestrial impact structures and impact shock experiments have revealed that deformation during an impact event produces melt and glass blebs that can mimic igneous melt inclusions in both morphology and composition. We have undertaken a geochemical and textural investigation of zircons from Apollo impact melt breccia 14311 to assess their formation mechanisms. The association of trapped melts with shock microtwins and monomineralic melt compositions suggests some inclusions formed as a result of the high pressures and temperatures of impact shock. All other inclusions in this study are associated with curviplanar features, planar features, crystal plastic deformation, or embayments (large regions in contact with adjacent melts or minerals) suggesting that they are not igneous melt inclusions. While these textures can be produced in tectonic environments, impacts are a likely formation mechanism since impacts are the main driver of tectonics on the Moon. The results of this study demonstrate that a combination of textural and compositional analyses can be employed distinguish between igneous melt inclusions and melt blebs in zircons from impact environments.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"59 7","pages":"1509-1522"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14162","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Investigations of trapped melt inclusions in minerals can yield insights into the compositions and conditions of parent magmas. These insights are particularly important for detrital grains like many of the lunar zircons found in samples returned by the Apollo missions. However, unlike their terrestrial counterparts, lunar zircons have potentially been exposed to billions of years of impact bombardment. Samples from terrestrial impact structures and impact shock experiments have revealed that deformation during an impact event produces melt and glass blebs that can mimic igneous melt inclusions in both morphology and composition. We have undertaken a geochemical and textural investigation of zircons from Apollo impact melt breccia 14311 to assess their formation mechanisms. The association of trapped melts with shock microtwins and monomineralic melt compositions suggests some inclusions formed as a result of the high pressures and temperatures of impact shock. All other inclusions in this study are associated with curviplanar features, planar features, crystal plastic deformation, or embayments (large regions in contact with adjacent melts or minerals) suggesting that they are not igneous melt inclusions. While these textures can be produced in tectonic environments, impacts are a likely formation mechanism since impacts are the main driver of tectonics on the Moon. The results of this study demonstrate that a combination of textural and compositional analyses can be employed distinguish between igneous melt inclusions and melt blebs in zircons from impact environments.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.