{"title":"Flat lens–based subwavelength focusing and scanning enabled by Fourier translation","authors":"Xin Zhang, Yanwen Hu, Haolin Lin, Hao Yin, Zhen Li, Shenhe Fu, Zhenqiang Chen","doi":"10.1515/nanoph-2024-0206","DOIUrl":null,"url":null,"abstract":"We demonstrate a technique for flexibly controlling subwavelength focusing and scanning, by using the Fourier translation property of a topology-preserved flat lens. The Fourier transform property of the flat lens enables converting an initial phase shift of light into a spatial displacement of its focus. The flat lens used in the technique exhibits a numerical aperture of 0.7, leading to focusing the incident light to a subwavelength scale. Based on the technique, we realize flexible control of the focal positions with arbitrary incident light, including higher-order structured light. Particularly, the presented platform can generate multifocal spots carrying optical angular momentum, with each focal spot independently controlled by the incident phase shift. This technique results in a scanning area of 10 μm × 10 μm, allowing to realize optical scanning imaging with spatial resolution up to 700 nm. This idea is able to achieve even smaller spatial resolution when using higher-numerical-aperture flat lens and can be extended to integrated scenarios with smaller dimension. The presented technique benefits potential applications such as in scanning imaging, optical manipulation, and laser lithography.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"33 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0206","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate a technique for flexibly controlling subwavelength focusing and scanning, by using the Fourier translation property of a topology-preserved flat lens. The Fourier transform property of the flat lens enables converting an initial phase shift of light into a spatial displacement of its focus. The flat lens used in the technique exhibits a numerical aperture of 0.7, leading to focusing the incident light to a subwavelength scale. Based on the technique, we realize flexible control of the focal positions with arbitrary incident light, including higher-order structured light. Particularly, the presented platform can generate multifocal spots carrying optical angular momentum, with each focal spot independently controlled by the incident phase shift. This technique results in a scanning area of 10 μm × 10 μm, allowing to realize optical scanning imaging with spatial resolution up to 700 nm. This idea is able to achieve even smaller spatial resolution when using higher-numerical-aperture flat lens and can be extended to integrated scenarios with smaller dimension. The presented technique benefits potential applications such as in scanning imaging, optical manipulation, and laser lithography.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.