Álvaro Buendía, José A. Sánchez-Gil, Vincenzo Giannini, William L. Barnes, Marie S. Rider
{"title":"Long-range molecular energy transfer mediated by strong coupling to plasmonic topological edge states","authors":"Álvaro Buendía, José A. Sánchez-Gil, Vincenzo Giannini, William L. Barnes, Marie S. Rider","doi":"10.1515/nanoph-2024-0077","DOIUrl":null,"url":null,"abstract":"Strong coupling between light and molecular matter is currently attracting interest both in chemistry and physics, in the fast-growing field of molecular polaritonics. The large near-field enhancement of the electric field of plasmonic surfaces and their high tunability make arrays of metallic nanoparticles an interesting platform to achieve and control strong coupling. Two dimensional plasmonic arrays with several nanoparticles per unit cell and crystalline symmetries can host topological edge and corner states. Here we explore the coupling of molecular materials to these edge states using a coupled-dipole framework including long-range interactions. We study both the weak and strong coupling regimes and demonstrate that coupling to topological edge states can be employed to enhance highly-directional long-range energy transfer between molecules.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"13 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0077","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Strong coupling between light and molecular matter is currently attracting interest both in chemistry and physics, in the fast-growing field of molecular polaritonics. The large near-field enhancement of the electric field of plasmonic surfaces and their high tunability make arrays of metallic nanoparticles an interesting platform to achieve and control strong coupling. Two dimensional plasmonic arrays with several nanoparticles per unit cell and crystalline symmetries can host topological edge and corner states. Here we explore the coupling of molecular materials to these edge states using a coupled-dipole framework including long-range interactions. We study both the weak and strong coupling regimes and demonstrate that coupling to topological edge states can be employed to enhance highly-directional long-range energy transfer between molecules.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.