Gui Fang Wu, Feng Ping Yan, Xin Yan, Wei Wang, Ting Li, Zhen Hua Li, Lan Ju Liang, Rui Zhang, Fu Tong Chu, Hai Yun Yao, Meng Wang, Zi Qun Wang, Lu Wang, Xiao Fei Hu
{"title":"Ultra-sensitive, graphene metasurface sensor integrated with the nonradiative anapole mode for detecting and differentiating two preservatives","authors":"Gui Fang Wu, Feng Ping Yan, Xin Yan, Wei Wang, Ting Li, Zhen Hua Li, Lan Ju Liang, Rui Zhang, Fu Tong Chu, Hai Yun Yao, Meng Wang, Zi Qun Wang, Lu Wang, Xiao Fei Hu","doi":"10.1515/nanoph-2024-0126","DOIUrl":null,"url":null,"abstract":"Graphene-based metamaterial sensors are of significant research value for detecting food preservatives at low concentrations due to their extremely high sensitivity levels. In this work, we proposed and experimentally demonstrated an anapole resonance-based graphene metasurface (An-graphene-Ms) sensor with its conductivity altered by electrostatic doping effects for detecting and differentiating between two preservatives, sodium benzoate and potassium sorbate, in the terahertz region. Sodium benzoate, owing to its benzene ring structure, established <jats:italic>π</jats:italic>–<jats:italic>π</jats:italic> stacking interactions between the <jats:italic>π</jats:italic>-electrons in the benzene ring and those in graphene, amplifying the sensing effect. The amplitude changes and phase differences of the An-graphene-Ms sensor for the sodium benzoate detection were greater than those for potassium sorbate at the same concentration. Additionally, to reveal the dependence of the resonance frequency on the time delay, the measured signals were investigated using the continuous wavelet transform (CWT), and the time-frequency combination of the metasurface sensor was performed. The 2D wavelet coefficient intensity cards are effectively constructed through CWT, which also presents a more accurate approach for distinguishing and determining the concentrations of the two preservatives.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"45 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0126","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Graphene-based metamaterial sensors are of significant research value for detecting food preservatives at low concentrations due to their extremely high sensitivity levels. In this work, we proposed and experimentally demonstrated an anapole resonance-based graphene metasurface (An-graphene-Ms) sensor with its conductivity altered by electrostatic doping effects for detecting and differentiating between two preservatives, sodium benzoate and potassium sorbate, in the terahertz region. Sodium benzoate, owing to its benzene ring structure, established π–π stacking interactions between the π-electrons in the benzene ring and those in graphene, amplifying the sensing effect. The amplitude changes and phase differences of the An-graphene-Ms sensor for the sodium benzoate detection were greater than those for potassium sorbate at the same concentration. Additionally, to reveal the dependence of the resonance frequency on the time delay, the measured signals were investigated using the continuous wavelet transform (CWT), and the time-frequency combination of the metasurface sensor was performed. The 2D wavelet coefficient intensity cards are effectively constructed through CWT, which also presents a more accurate approach for distinguishing and determining the concentrations of the two preservatives.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.