{"title":"Class 1 Eye-Safe Formally Invisible Underwater Optical Wireless Communication System","authors":"Ayumu Kariya;Keita Tanaka;Fumiya Kobori;Kiichiro Kuwahara;Shogo Hayashida;Takahiro Kodama","doi":"10.1109/JPHOT.2024.3426284","DOIUrl":null,"url":null,"abstract":"When using underwater optical wireless communication in areas close to human habitats— such as shallow sea areas—specifications for highly-secure, large-capacity optical transceivers are required. Real-time transmission of 850 nm, direct-current optical orthogonal frequency division multiplexing signals for full-duplex underwater invisible light communication has been achieved. We experimentally confirmed that subcarrier adaptive modulation could transmit at maximum capacity depending on the transmission distance, while changing the transmission distance in shallow seawater channels. We confirmed that there was no disturbing influence due to sunlight by using a honeycomb structure for sunlight shielding. Moreover, we found that the effect of disruption caused by the sea surface vibrating due to the 3 m/s wind speed did not affect the signal quality. 4K video streaming is also done on a 1.2 m underwater channel transmission. To the best of our knowledge, this is the first report of full-duplex transmission of invisible-band underwater optical wireless communication for shallow waters.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 4","pages":"1-12"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10594719","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10594719/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
When using underwater optical wireless communication in areas close to human habitats— such as shallow sea areas—specifications for highly-secure, large-capacity optical transceivers are required. Real-time transmission of 850 nm, direct-current optical orthogonal frequency division multiplexing signals for full-duplex underwater invisible light communication has been achieved. We experimentally confirmed that subcarrier adaptive modulation could transmit at maximum capacity depending on the transmission distance, while changing the transmission distance in shallow seawater channels. We confirmed that there was no disturbing influence due to sunlight by using a honeycomb structure for sunlight shielding. Moreover, we found that the effect of disruption caused by the sea surface vibrating due to the 3 m/s wind speed did not affect the signal quality. 4K video streaming is also done on a 1.2 m underwater channel transmission. To the best of our knowledge, this is the first report of full-duplex transmission of invisible-band underwater optical wireless communication for shallow waters.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.