Quasi-Solid Composite Polymer Electrolyte-Based Structural Batteries with High Ionic Conductivity and Excellent Mechanical Properties

Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang
{"title":"Quasi-Solid Composite Polymer Electrolyte-Based Structural Batteries with High Ionic Conductivity and Excellent Mechanical Properties","authors":"Zeru Wang, Yue Hou, Sen Li, Zhuang Xu, Xiaotao Zhu, Bing Guo, Dong Lu, Ke Wang","doi":"10.1002/sstr.202400050","DOIUrl":null,"url":null,"abstract":"Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li<sup>+</sup> transport and contributes to the high ambient ionic conductivity of 1.47 × 10<sup>−3</sup> S cm<sup>−1</sup>. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li<sup>+</sup> flux and a high Li<sup>+</sup> transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO<sub>4</sub> and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Structural lithium batteries integrated with energy storage and mechanical load-bearing capabilities hold great promise to revolutionize lightweight transport vehicles. However, the current development of structural batteries faces critical challenges in balancing the electrochemical and mechanical properties of the electrolytes. Herein, a super strong quasi-solid composite polymer electrolyte (QCPE) is successfully fabricated by reinforcing polyelectrolyte with 3D in situ self-assembled metal–organic framework-modified glass fiber (MOF@GF) soaking a small amount of liquid electrolyte, which provides continuous ion conductive pathways for fast Li+ transport and contributes to the high ambient ionic conductivity of 1.47 × 10−3 S cm−1. The micropores and abundant polar functional groups selectively restrict the transport of anions to afford a homogeneous Li+ flux and a high Li+ transference number (0.56). Simultaneously, the MOF@GF provides more effective reinforcement and a remarkably high tensile strength of 48.6 MPa, and Young's modulus of 1.66 GPa is achieved. Furthermore, the lithium metal batteries fabricated with this QCPE exhibit a long, stable operation lifespan of 2000 h and excellent cycling performance with LiFePO4 and NCM811 cathodes. This design strategy generally opens a new avenue for structural batteries with high ionic conductivity and outstanding mechanical properties, which holds great promise for industrial translation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有高离子电导率和优异机械性能的准固体复合聚合物电解质结构电池
集成了储能和机械承载能力的结构锂电池为轻型运输车辆带来了巨大的变革前景。然而,目前结构电池的开发在平衡电解质的电化学和机械性能方面面临严峻挑战。本文通过三维原位自组装金属有机框架改性玻璃纤维(MOF@GF)浸泡少量液态电解质来增强聚电解质,成功制备了一种超强准固体复合聚合物电解质(QCPE),为Li+的快速传输提供了连续的离子传导途径,并使其具有1.47 × 10-3 S cm-1的高环境离子电导率。微孔和丰富的极性官能团选择性地限制了阴离子的迁移,从而提供了均匀的 Li+ 通量和较高的 Li+ 迁移数(0.56)。与此同时,MOF@GF 提供了更有效的强化作用,抗拉强度高达 48.6 兆帕,杨氏模量为 1.66 GPa。此外,用这种 QCPE 制成的金属锂电池在使用 LiFePO4 和 NCM811 正极时,具有长达 2000 小时的稳定工作寿命和优异的循环性能。这种设计策略总体上为具有高离子传导性和出色机械性能的结构电池开辟了一条新途径,为工业转化带来了巨大前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
期刊最新文献
Covalently Linked Pigment@TiO2 Hybrid Materials by One-Pot Solvothermal Synthesis Pressure-Enhanced Superconductivity and Structural Phase Transition in Layered Sn4P3 Unveiling Inequality of Atoms in Ultrasmall Pt Clusters: Oxygen Adsorption Limited to the Uppermost Atomic Layer Spatially Selective Ultraprecision Polishing and Cleaning by Collective Behavior of Micro Spinbots Inkjet-Printed Flexible and Transparent Ti3C2Tx/TiO2 Composite Films: A Strategy for Photoelectrically Controllable Photocatalytic Degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1