{"title":"Effect of nano-silica on mechanical properties and microstructure of high-volume ground granulated blast furnace slag cement paste","authors":"Qinqiang Wang, Kangbing Ma, Tao Liu","doi":"10.1007/s10971-024-06459-w","DOIUrl":null,"url":null,"abstract":"<div><p>Incorporating ground granulated blast furnace slag (GBS) as a supplementary cementitious material in cementitious materials can reduce the cement content and improve the performance of cement-based materials. However, adding GBS especially in large quantities, tends to decrease the early-age performance of cement-based materials, such as reducing early strength, increasing porosity, etc. This study introduced nanosilica (NS) into cementitious materials with a high volume GBS to address the deficiencies in early-age performance. This study aims to investigate and discuss the influence of NS on the mechanical properties and microstructure of cementitious materials with a high-volume GBS. The compressive strength, composition of hydration products, distribution of pores, composition of pore structure and microscopic morphology were tested and analyzed. Results showed a significant strength reduction in high-volume GBS (60 wt% GBS) cement paste when compared with pure cement paste samples. NS demonstrated a remarkable enhancement in the strength of high-volume GBS-contained samples in 3 and 7 days. The positive impact of NS on the strength of high-volume GBS-contained samples remained evident at 28 days of age. NS facilitated the hydration of C<sub>3</sub>S and C<sub>2</sub>S in high-volume GBS-contained samples. The enhancement in the hydration percentage of C<sub>2</sub>S was particularly pronounced. In the high-volume GBS-containing cementitious materials, NS continued to consume CH and participate in pozzolanic reactions at a later age. NS decreased the pore volume in the ranges of >100 μm and 100 nm–1 μm in high-volume GBS-contained samples, reduced the quantity of unhydrated GBS and resulted in a more compact structure. The enhancement of strength and the promotion of C<sub>3</sub>S and C<sub>2</sub>S hydration in increased with the higher addition of NS at 1 wt% and 2 wt%. However, this enhancement and promotion effect diminished when the NS dosage increased to 3 wt%.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Cumulative pore volume of cement paste samples at curing age of (a) 7 days and (b) 28 days.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 2","pages":"586 - 602"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06459-w","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating ground granulated blast furnace slag (GBS) as a supplementary cementitious material in cementitious materials can reduce the cement content and improve the performance of cement-based materials. However, adding GBS especially in large quantities, tends to decrease the early-age performance of cement-based materials, such as reducing early strength, increasing porosity, etc. This study introduced nanosilica (NS) into cementitious materials with a high volume GBS to address the deficiencies in early-age performance. This study aims to investigate and discuss the influence of NS on the mechanical properties and microstructure of cementitious materials with a high-volume GBS. The compressive strength, composition of hydration products, distribution of pores, composition of pore structure and microscopic morphology were tested and analyzed. Results showed a significant strength reduction in high-volume GBS (60 wt% GBS) cement paste when compared with pure cement paste samples. NS demonstrated a remarkable enhancement in the strength of high-volume GBS-contained samples in 3 and 7 days. The positive impact of NS on the strength of high-volume GBS-contained samples remained evident at 28 days of age. NS facilitated the hydration of C3S and C2S in high-volume GBS-contained samples. The enhancement in the hydration percentage of C2S was particularly pronounced. In the high-volume GBS-containing cementitious materials, NS continued to consume CH and participate in pozzolanic reactions at a later age. NS decreased the pore volume in the ranges of >100 μm and 100 nm–1 μm in high-volume GBS-contained samples, reduced the quantity of unhydrated GBS and resulted in a more compact structure. The enhancement of strength and the promotion of C3S and C2S hydration in increased with the higher addition of NS at 1 wt% and 2 wt%. However, this enhancement and promotion effect diminished when the NS dosage increased to 3 wt%.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.