Quantitative Study on the Electrothermal Properties of Carbon Nanotube Film and its Out-of-Autoclave-Manufactured Glass Fiber-Reinforced Epoxy-Resin Composites

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Current Nanoscience Pub Date : 2024-07-10 DOI:10.2174/0115734137296780240529172003
Shaojun Wu, Xianglai Xu
{"title":"Quantitative Study on the Electrothermal Properties of Carbon Nanotube Film and its Out-of-Autoclave-Manufactured Glass Fiber-Reinforced Epoxy-Resin Composites","authors":"Shaojun Wu, Xianglai Xu","doi":"10.2174/0115734137296780240529172003","DOIUrl":null,"url":null,"abstract":": Carbon nanotube films are utilized in various fields, particularly electric heating, owing to their exceptional thermal and electrical properties. However, quantitative research on the electrothermal characteristics of carbon nanotube film is insufficient, and glass fiberreinforced epoxy-resin composites prepared through the electrothermal method of carbon nanotube films (i.e., the out-of-autoclave technique) have not yet been reported. Herein, according to a mathematical model and experimental demonstration, a quantitative relationship, T = T0 + (t/L2)·(V2σ)·(1/αw), was proposed to explain the electrothermal properties of carbon nanotube films. Glass fiber-reinforced composites with an outstanding tensile strength of 535.6 MPa and an elongation-at-break of 1.6% were prepared through the out-of-autoclave technique using the designed carbon nanotube film. The composites outperformed previous mechanical composites in terms of energy consumption. Experimental investigations and molecular simulations revealed the mechanical mechanisms of the composites. These findings quantitatively revealed the electrothermal properties of carbon nanotube films, advancing their application in the out-ofautoclave manufacturing of high-performance resin-matrix composites.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2174/0115734137296780240529172003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

: Carbon nanotube films are utilized in various fields, particularly electric heating, owing to their exceptional thermal and electrical properties. However, quantitative research on the electrothermal characteristics of carbon nanotube film is insufficient, and glass fiberreinforced epoxy-resin composites prepared through the electrothermal method of carbon nanotube films (i.e., the out-of-autoclave technique) have not yet been reported. Herein, according to a mathematical model and experimental demonstration, a quantitative relationship, T = T0 + (t/L2)·(V2σ)·(1/αw), was proposed to explain the electrothermal properties of carbon nanotube films. Glass fiber-reinforced composites with an outstanding tensile strength of 535.6 MPa and an elongation-at-break of 1.6% were prepared through the out-of-autoclave technique using the designed carbon nanotube film. The composites outperformed previous mechanical composites in terms of energy consumption. Experimental investigations and molecular simulations revealed the mechanical mechanisms of the composites. These findings quantitatively revealed the electrothermal properties of carbon nanotube films, advancing their application in the out-ofautoclave manufacturing of high-performance resin-matrix composites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碳纳米管薄膜及其高压釜外玻璃纤维增强环氧树脂复合材料电热性能的定量研究
:碳纳米管薄膜因其优异的热学和电学特性被广泛应用于各个领域,尤其是电加热领域。然而,有关碳纳米管薄膜电热特性的定量研究尚不充分,通过碳纳米管薄膜电热法(即釜外技术)制备玻璃纤维增强环氧树脂复合材料的研究也尚未见报道。本文根据数学模型和实验证明,提出了一个定量关系 T = T0 + (t/L2)-(V2σ)-(1/αw) 来解释碳纳米管薄膜的电热特性。利用所设计的碳纳米管薄膜,通过釜外技术制备了玻璃纤维增强复合材料,其拉伸强度达到 535.6 兆帕,断裂伸长率为 1.6%。该复合材料在能耗方面优于以往的机械复合材料。实验研究和分子模拟揭示了复合材料的机械机理。这些发现定量揭示了碳纳米管薄膜的电热特性,推动了其在高压釜外制造高性能树脂基复合材料中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
期刊最新文献
Fabrication of Ti/Zr-SnO2/PbO2-Nd Electrode for Efficient Electrocatalytic Degradation of Alizarine Yellow R Recent Advances of the Ultimate Microbial Influenced Corrosion (MIC): A Review A Comprehensive Review on Co-Crystals: Transforming Drug Delivery with Enhanced Solubility and Bioavailability Deposition of TiO2/Polymethylene Biguanide on Stainless Steel Wire for the Enhancement of Corrosion Resistance and Stability Synthesis of Silver Nanoparticles Using Haplophyllum robustum Bge. Extract: Antibacterial, Antifungal, and Scolicidal activity against Echinococcus granulosus Protoscolices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1