Liu Liu , Chingfang Hsu , Man Ho Au , Lein Harn , Jianqun Cui , Zhuo Zhao
{"title":"A revocable and comparable attribute-based signature scheme from lattices for IoMT","authors":"Liu Liu , Chingfang Hsu , Man Ho Au , Lein Harn , Jianqun Cui , Zhuo Zhao","doi":"10.1016/j.sysarc.2024.103222","DOIUrl":null,"url":null,"abstract":"<div><p>The Internet of Medical Things (IoMT) refers to the utilization of the Internet of Things (IoT) technology in the healthcare industry. Access control is particularly important for IoMT due to the sensitive nature of patient data, such as electronic health records (EHR). Although fine-grained access control can be achieved by attribute-based signature (ABS), existing ABS schemes lacks the ability to provide range comparison access policy in which patients can check whether the attribute value is within a certain range. In addition, the dynamic change of doctors’ permissions and the development of quantum technology also require that ABS can provide user revocation and resist quantum attacks. In order to solve these problems and make ABS schemes for IoMT more useful and more secure, we come up with a novel revocable and comparable ABS (RC-ABS) from lattices for IoMT, enabling fine-grained access control, attribute range comparison, and user revocation. First of all, we provide a proof of the unforgeability of our scheme in the standard model (SM) under the selective user revocation list semi-adaptive attribute adaptive message attack, which can resist attacks by semi-honest adversaries and prevent adversaries from attacking the weaknesses of hash functions in IoMT. Furthermore, our ABS scheme leverages the small integer solution problem (SIS) to effectively defends against quantum algorithm attacks. Finally, detailed performance analysis demonstrates that our solution not only possesses enhanced security features and functionalities, such as revocability, comparability, and resistance against quantum attacks, but also maintains a constant computation cost of user revocation, making it more efficient compared to other revocation schemes.</p></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"154 ","pages":"Article 103222"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124001590","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Medical Things (IoMT) refers to the utilization of the Internet of Things (IoT) technology in the healthcare industry. Access control is particularly important for IoMT due to the sensitive nature of patient data, such as electronic health records (EHR). Although fine-grained access control can be achieved by attribute-based signature (ABS), existing ABS schemes lacks the ability to provide range comparison access policy in which patients can check whether the attribute value is within a certain range. In addition, the dynamic change of doctors’ permissions and the development of quantum technology also require that ABS can provide user revocation and resist quantum attacks. In order to solve these problems and make ABS schemes for IoMT more useful and more secure, we come up with a novel revocable and comparable ABS (RC-ABS) from lattices for IoMT, enabling fine-grained access control, attribute range comparison, and user revocation. First of all, we provide a proof of the unforgeability of our scheme in the standard model (SM) under the selective user revocation list semi-adaptive attribute adaptive message attack, which can resist attacks by semi-honest adversaries and prevent adversaries from attacking the weaknesses of hash functions in IoMT. Furthermore, our ABS scheme leverages the small integer solution problem (SIS) to effectively defends against quantum algorithm attacks. Finally, detailed performance analysis demonstrates that our solution not only possesses enhanced security features and functionalities, such as revocability, comparability, and resistance against quantum attacks, but also maintains a constant computation cost of user revocation, making it more efficient compared to other revocation schemes.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.