Menghong Guan , Haiyong Bao , Zhiqiang Li , Hao Pan , Cheng Huang , Hong-Ning Dai
{"title":"SAMFL: Secure Aggregation Mechanism for Federated Learning with Byzantine-robustness by functional encryption","authors":"Menghong Guan , Haiyong Bao , Zhiqiang Li , Hao Pan , Cheng Huang , Hong-Ning Dai","doi":"10.1016/j.sysarc.2024.103304","DOIUrl":null,"url":null,"abstract":"<div><div>Federated learning (FL) enables collaborative model training without sharing private data, thereby potentially meeting the growing demand for data privacy protection. Despite its potentials, FL also poses challenges in achieving privacy-preservation and Byzantine-robustness when handling sensitive data. To address these challenges, we present a novel <strong>S</strong>ecure <strong>A</strong>ggregation <strong>M</strong>echanism for <strong>F</strong>ederated <strong>L</strong>earning with Byzantine-Robustness by Functional Encryption (SAMFL). Our approach designs a novel dual-decryption multi-input functional encryption (DD-MIFE) scheme, which enables efficient computation of cosine similarities and aggregation of encrypted gradients through a single ciphertext. This innovative scheme allows for dual decryption, producing distinct results based on different keys, while maintaining high efficiency. We further propose TF-Init, integrating DD-MIFE with Truth Discovery (TD) to eliminate the reliance on a root dataset. Additionally, we devise a secure cosine similarity calculation aggregation protocol (SC2AP) using DD-MIFE, ensuring privacy-preserving and Byzantine-robust FL secure aggregation. To enhance FL efficiency, we employ single instruction multiple data (SIMD) to parallelize encryption and decryption processes. Concurrently, to preserve accuracy, we incorporate differential privacy (DP) with selective clipping of model layers within the FL framework. Finally, we integrate TF-Init, SC2AP, SIMD, and DP to construct SAMFL. Extensive experiments demonstrate that SAMFL successfully defends against both inference attacks and poisoning attacks, while improving efficiency and accuracy compared to existing methods. SAMFL provides a comprehensive integrated solution for FL with efficiency, accuracy, privacy-preservation, and robustness.</div></div>","PeriodicalId":50027,"journal":{"name":"Journal of Systems Architecture","volume":"157 ","pages":"Article 103304"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Architecture","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1383762124002418","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Federated learning (FL) enables collaborative model training without sharing private data, thereby potentially meeting the growing demand for data privacy protection. Despite its potentials, FL also poses challenges in achieving privacy-preservation and Byzantine-robustness when handling sensitive data. To address these challenges, we present a novel Secure Aggregation Mechanism for Federated Learning with Byzantine-Robustness by Functional Encryption (SAMFL). Our approach designs a novel dual-decryption multi-input functional encryption (DD-MIFE) scheme, which enables efficient computation of cosine similarities and aggregation of encrypted gradients through a single ciphertext. This innovative scheme allows for dual decryption, producing distinct results based on different keys, while maintaining high efficiency. We further propose TF-Init, integrating DD-MIFE with Truth Discovery (TD) to eliminate the reliance on a root dataset. Additionally, we devise a secure cosine similarity calculation aggregation protocol (SC2AP) using DD-MIFE, ensuring privacy-preserving and Byzantine-robust FL secure aggregation. To enhance FL efficiency, we employ single instruction multiple data (SIMD) to parallelize encryption and decryption processes. Concurrently, to preserve accuracy, we incorporate differential privacy (DP) with selective clipping of model layers within the FL framework. Finally, we integrate TF-Init, SC2AP, SIMD, and DP to construct SAMFL. Extensive experiments demonstrate that SAMFL successfully defends against both inference attacks and poisoning attacks, while improving efficiency and accuracy compared to existing methods. SAMFL provides a comprehensive integrated solution for FL with efficiency, accuracy, privacy-preservation, and robustness.
期刊介绍:
The Journal of Systems Architecture: Embedded Software Design (JSA) is a journal covering all design and architectural aspects related to embedded systems and software. It ranges from the microarchitecture level via the system software level up to the application-specific architecture level. Aspects such as real-time systems, operating systems, FPGA programming, programming languages, communications (limited to analysis and the software stack), mobile systems, parallel and distributed architectures as well as additional subjects in the computer and system architecture area will fall within the scope of this journal. Technology will not be a main focus, but its use and relevance to particular designs will be. Case studies are welcome but must contribute more than just a design for a particular piece of software.
Design automation of such systems including methodologies, techniques and tools for their design as well as novel designs of software components fall within the scope of this journal. Novel applications that use embedded systems are also central in this journal. While hardware is not a part of this journal hardware/software co-design methods that consider interplay between software and hardware components with and emphasis on software are also relevant here.