Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using ODE-Based Generative Models

Bo Liang, Minghui Du, He Wang, Yuxiang Xu, Chang Liu, Xiaotong Wei, Peng Xu, Li-e Qiang, Ziren Luo
{"title":"Rapid Parameter Estimation for Merging Massive Black Hole Binaries Using ODE-Based Generative Models","authors":"Bo Liang, Minghui Du, He Wang, Yuxiang Xu, Chang Liu, Xiaotong Wei, Peng Xu, Li-e Qiang, Ziren Luo","doi":"arxiv-2407.07125","DOIUrl":null,"url":null,"abstract":"Detecting the coalescences of massive black hole binaries (MBHBs) is one of\nthe primary targets for space-based gravitational wave observatories such as\nLISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging\nMBHBs is of great significance for both astrophysics and the global fitting of\nall resolvable sources. However, such analyses entail significant computational\ncosts. To address these challenges, inspired by the latest progress in\ngenerative models, we proposed a novel artificial intelligence (AI) based\nparameter estimation method called Variance Preserving Flow Matching Posterior\nEstimation (VPFMPE). Specifically, we utilize triangular interpolation to\nmaintain variance over time, thereby constructing a transport path for training\ncontinuous normalization flows. Compared to the simple linear interpolation\nmethod used in flow matching to construct the optimal transport path, our\napproach better captures continuous temporal variations, making it more\nsuitable for the parameter estimation of MBHBs. Additionally, we creatively\nintroduce a parameter transformation method based on the symmetry in the\ndetector's response function. This transformation is integrated within VPFMPE,\nallowing us to train the model using a simplified dataset, and then perform\nparameter estimation on more general data, hence also acting as a crucial\nfactor in improving the training speed. In conclusion, for the first time,\nwithin a comprehensive and reasonable parameter range, we have achieved a\ncomplete and unbiased 11-dimensional rapid inference for MBHBs in the presence\nof astrophysical confusion noise using ODE-based generative models. In the\nexperiments based on simulated data, our model produces posterior distributions\ncomparable to those obtained by nested sampling.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting the coalescences of massive black hole binaries (MBHBs) is one of the primary targets for space-based gravitational wave observatories such as LISA, Taiji, and Tianqin. The fast and accurate parameter estimation of merging MBHBs is of great significance for both astrophysics and the global fitting of all resolvable sources. However, such analyses entail significant computational costs. To address these challenges, inspired by the latest progress in generative models, we proposed a novel artificial intelligence (AI) based parameter estimation method called Variance Preserving Flow Matching Posterior Estimation (VPFMPE). Specifically, we utilize triangular interpolation to maintain variance over time, thereby constructing a transport path for training continuous normalization flows. Compared to the simple linear interpolation method used in flow matching to construct the optimal transport path, our approach better captures continuous temporal variations, making it more suitable for the parameter estimation of MBHBs. Additionally, we creatively introduce a parameter transformation method based on the symmetry in the detector's response function. This transformation is integrated within VPFMPE, allowing us to train the model using a simplified dataset, and then perform parameter estimation on more general data, hence also acting as a crucial factor in improving the training speed. In conclusion, for the first time, within a comprehensive and reasonable parameter range, we have achieved a complete and unbiased 11-dimensional rapid inference for MBHBs in the presence of astrophysical confusion noise using ODE-based generative models. In the experiments based on simulated data, our model produces posterior distributions comparable to those obtained by nested sampling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于 ODE 的生成模型快速估算大质量黑洞双星合并的参数
探测大质量黑洞双星(MBHBs)的聚合是空间引力波天文台(如 LISA、太极和天琴)的主要目标之一。对合并的大质量黑洞双星进行快速而准确的参数估计,对天体物理学和所有可分辨源的全球拟合都具有重要意义。然而,这种分析需要大量的计算成本。为了应对这些挑战,我们受再生模型最新进展的启发,提出了一种新的基于人工智能(AI)的参数估计方法,称为 "方差保存流匹配后验估计(VPFMPE)"。具体来说,我们利用三角插值来保持随时间变化的方差,从而为训练连续的归一化流构建了一条传输路径。与流量匹配中用于构建最优传输路径的简单线性插值法相比,我们的方法能更好地捕捉连续的时间变化,因此更适合 MBHB 的参数估计。此外,我们还创造性地引入了一种基于探测器响应函数对称性的参数转换方法。这种变换方法集成在 VPFMPE 中,使我们能够使用简化数据集训练模型,然后在更一般的数据上进行参数估计,因此也是提高训练速度的关键因素。总之,我们首次在一个全面而合理的参数范围内,利用基于 ODE 的生成模型,在存在天体物理混淆噪声的情况下,实现了对 MBHB 的完整而无偏的 11 维快速推断。在基于模拟数据的实验中,我们的模型产生的后验分布可与嵌套采样得到的后验分布相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1