Phaneendra Mogali, Ajendra Singh, Bhawanisingh G Desai
{"title":"Unlocking the hidden potential: Petrophysical analysis of adjoining basement reservoirs in the Cauvery Basin’s Madanam Palaeo-High","authors":"Phaneendra Mogali, Ajendra Singh, Bhawanisingh G Desai","doi":"10.1007/s12040-024-02355-7","DOIUrl":null,"url":null,"abstract":"<p>The Cauvery Basin is one of the prolific hydrocarbon-producing basins of southern India. The pericratonic basin has five sub-basins separated by five basement and structural highs formed by granitic and gneissic rocks of the Archaean Southern Granulite Terrane. The sub-basins have excellent Cretaceous source rocks and hydrocarbon-bearing reservoirs of different geological ages. Commercial hydrocarbons are produced from the Archean basement highs, specifically from the Kumbakonam–Madanam palaeo-highs of the Cauvery basin. The paper addresses basement characterisation using conventional as well as advanced well logs for accurate characterisation of the basement reservoirs. Basement reservoirs are challenging in terms of sporadic porosity and permeability distribution. Most of the porosities and permeability are attributed to secondary generation by fracturing and weathering. The present work aims to understand and compare the petrophysical attributes of two kinds of basement reservoirs (fractured basement and weathered basement) on the Kumbakonam–Madanam High. Two wells from each type lying on either side of the Madanam High were selected. Well log data, including gamma-ray, resistivity, porosity (neutron and bulk density), acoustic logs and advanced logs, such as resistivity images and dipole acoustic and elemental capture spectroscopy logs, from these four wells were analysed for their petrophysical understanding. Furthermore, image and acoustic log data were integrated to characterise the fracture geometry and fracture permeability of the basement reservoirs. Conventional log suites showing low GR, low resistivity, high density, and high neutron porosity are indicative of intricate lithologies, possibly mafic rocks. A notable negative crossover in density and neutron log along with excess Si concentration indicates weathering. A higher fracture density with a crisscross fracture/mesh fracture pattern is indicated by the analysis of image logs, shear wave anisotropy, and Stoneley fractures. Thus, a comparison of the petrophysical attributes of both fields is attempted to understand the fractured and weathered basement reservoirs and their geological characteristics. In conclusion, the basement reservoirs of the Madanam High Field are of interest because of their hydrocarbon-producing ability, and proper synthesis of petrophysical attributes will help develop activities in the basement reservoirs.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"54 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02355-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cauvery Basin is one of the prolific hydrocarbon-producing basins of southern India. The pericratonic basin has five sub-basins separated by five basement and structural highs formed by granitic and gneissic rocks of the Archaean Southern Granulite Terrane. The sub-basins have excellent Cretaceous source rocks and hydrocarbon-bearing reservoirs of different geological ages. Commercial hydrocarbons are produced from the Archean basement highs, specifically from the Kumbakonam–Madanam palaeo-highs of the Cauvery basin. The paper addresses basement characterisation using conventional as well as advanced well logs for accurate characterisation of the basement reservoirs. Basement reservoirs are challenging in terms of sporadic porosity and permeability distribution. Most of the porosities and permeability are attributed to secondary generation by fracturing and weathering. The present work aims to understand and compare the petrophysical attributes of two kinds of basement reservoirs (fractured basement and weathered basement) on the Kumbakonam–Madanam High. Two wells from each type lying on either side of the Madanam High were selected. Well log data, including gamma-ray, resistivity, porosity (neutron and bulk density), acoustic logs and advanced logs, such as resistivity images and dipole acoustic and elemental capture spectroscopy logs, from these four wells were analysed for their petrophysical understanding. Furthermore, image and acoustic log data were integrated to characterise the fracture geometry and fracture permeability of the basement reservoirs. Conventional log suites showing low GR, low resistivity, high density, and high neutron porosity are indicative of intricate lithologies, possibly mafic rocks. A notable negative crossover in density and neutron log along with excess Si concentration indicates weathering. A higher fracture density with a crisscross fracture/mesh fracture pattern is indicated by the analysis of image logs, shear wave anisotropy, and Stoneley fractures. Thus, a comparison of the petrophysical attributes of both fields is attempted to understand the fractured and weathered basement reservoirs and their geological characteristics. In conclusion, the basement reservoirs of the Madanam High Field are of interest because of their hydrocarbon-producing ability, and proper synthesis of petrophysical attributes will help develop activities in the basement reservoirs.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.