Drug delivery in leptomeningeal disease: Navigating barriers and beyond.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Delivery Pub Date : 2024-12-01 Epub Date: 2024-07-12 DOI:10.1080/10717544.2024.2375521
Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili
{"title":"Drug delivery in leptomeningeal disease: Navigating barriers and beyond.","authors":"Numair Arshad, Nupur Biswas, Jaya Gill, Santosh Kesari, Shashaanka Ashili","doi":"10.1080/10717544.2024.2375521","DOIUrl":null,"url":null,"abstract":"<p><p>Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2375521"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11249152/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2375521","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Leptomeningeal disease (LMD) refers to the infiltration of cancer cells into the leptomeningeal compartment. Leptomeninges are the two membranous layers, called the arachnoid membrane and pia mater. The diffuse nature of LMD poses a challenge to its effective diagnosis and successful management. Furthermore, the predominant phenotype; solid masses or freely floating cells, has altering implications on the effectiveness of drug delivery systems. The standard of care is the intrathecal delivery of chemotherapy drugs but it is associated with increased instances of treatment-related complications, low patient compliance, and suboptimal drug distribution. An alternative involves administering the drugs systemically, after which they must traverse fluid barriers to arrive at their destination within the leptomeningeal space. However, this route is known to cause off-target effects as well as produce subtherapeutic drug concentrations at the target site within the central nervous system. The development of new drug delivery systems such as liposomal cytarabine has improved drug delivery in leptomeningeal metastatic disease, but much still needs to be done to effectively target this challenging condition. In this review, we discuss about the anatomy of leptomeninges relevant for drug penetration, the conventional and advanced drug delivery methods for LMD. We also discuss the future directions being set by different clinical trials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑垂体疾病的药物输送:克服障碍,超越自我。
脑膜疾病(LMD)是指癌细胞渗入脑膜。脑膜是指蛛网膜和桥脑这两层膜。LMD 的弥漫性给有效诊断和成功治疗带来了挑战。此外,主要表型(固体肿块或自由漂浮的细胞)对给药系统的有效性也有影响。目前的标准治疗方法是鞘内给药,但这与治疗相关并发症增多、患者依从性低和药物分布不理想有关。另一种方法是全身给药,然后药物必须穿过液体屏障才能到达其在脑膜腔内的目的地。然而,众所周知,这种途径会造成脱靶效应,并在中枢神经系统内的目标部位产生低于治疗浓度的药物。脂质体阿糖胞苷等新型给药系统的开发改善了对脑膜转移性疾病的给药,但要有效针对这一具有挑战性的疾病,仍有许多工作要做。在这篇综述中,我们将讨论与药物渗透相关的脑膜解剖学、治疗 LMD 的传统和先进给药方法。我们还讨论了不同临床试验确定的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
期刊最新文献
Statement of Retraction. Statement of Retraction. Retraction. Advances in the use of local anesthetic extended-release systems in pain management. Biodegradable polymeric insulin microneedles - a design and materials perspective review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1