Effect of monocultures and polycultures of Typha latifolia and Heliconia psittacorum on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands.
Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo
{"title":"Effect of monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> on the treatment of river waters contaminated with landfill leachate/domestic wastewater in partially saturated vertical constructed wetlands.","authors":"Denisse Astrid Hernández-Castelán, Florentina Zurita, Oscar Marín-Peña, Erick Arturo Betanzo-Torres, Mayerlin Sandoval-Herazo, Jesús Castellanos-Rivera, Luis Carlos Sandoval Herazo","doi":"10.1080/15226514.2024.2379007","DOIUrl":null,"url":null,"abstract":"<p><p>Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of <i>Typha latifolia</i> and <i>Heliconia psittacorum</i> to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with <i>Typha latifolia</i> monoculture, two with <i>Heliconia psittacorum</i> monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (<i>p</i> < 0.05) in systems with polycultures (TSS:95%, BOD<sub>5</sub>:83%, COD:89%, TN:82% and NH<sub>4+</sub>:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD<sub>5</sub>:79%, COD:85%, TN:79%, NH<sub>4+</sub>:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being <i>Typha latifolia</i> the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2379007","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Partially Saturated Vertical Constructed Wetlands (PSV-CWs) are novel wastewater treatment systems that work through aerobic and anaerobic conditions that favor the removal of pollutants found in high concentrations, such as rivers contaminated with domestic wastewater and landfill leachate. The objective of the study was to evaluate the efficiency of PSV-CWs using monocultures and polycultures of Typha latifolia and Heliconia psittacorum to treat river waters contaminated with leachates from open dumps and domestic wastewater. Six experimental units of PSV-CWs were used; two were planted with Typha latifolia monoculture, two with Heliconia psittacorum monoculture and two with polycultures of both plants. The results indicated better organic matter and nitrogen removal efficiencies (p < 0.05) in systems with polycultures (TSS:95%, BOD5:83%, COD:89%, TN:82% and NH4+:99%). In general, the whole system showed high average removal efficiencies (TSS:93%, BOD5:79%, COD:85%, TN:79%, NH4+:98% and TP:85%). Regarding vegetation, both species developed better in units with monocultures, being Typha latifolia the one that reached a more remarkable development. However, both species showed high resistance to the contaminated environment. These results showed higher removals than those reported in the literature with conventional Free Flow Vertical Constructed Wetlands (FFV-CWs), so PSV-CWs could be a suitable option to treat this type of effluent.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.