首页 > 最新文献

International Journal of Phytoremediation最新文献

英文 中文
Improving phosphorus availability in saline-alkaline agricultural soils through biochar and phosphorus solubilizing bacteria (PSB) inoculation: a greenhouse experiment.
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-07 DOI: 10.1080/15226514.2025.2473594
Muhammad Idress, Palwasha Khan, Javed Nawab, Ajmal Khan, Sardar Khan, Roshan Ali, Abdul Rehman, Arshad Alam, Suliman Ayaz, Haimanote Bayabil

Phosphorus (P) is an essential element for life on earth and a limiting nutrient for plant growth. However, its availability in saline-alkaline soils is significantly reduced, adversely affecting plant productivity. Saline-alkaline soil is a widespread problem that severely affects plant growth and productivity. The Parthenium-derived biochar (PB) and Sewage sludge-derived biochar (SSB) were analyzed for pH, electric conductivity (EC), cation exchange capacity (CEC), calorific values (CV), and surface area (SSA). The phosphate solubilizing index (SI; 2.83 mM) and quantitative analysis (521.5 µg ml-1) were suggested that PSB-01 efficient and the strain identified through 16S rRNA sequencing techniques. The experiment was based on completely randomized block design (CRBD) with triplicates. The results revealed that the application of PB, SSB, and PSB-01 significantly improved Spinacia oleracea (S. oleracea) growth as compared to the control. The highest growth was observed in the combined amendments as compared to single once in both 1% and 3%. The highest reduction in cation and anion concentrations was observed in the combined applications of PB, SSB and PSB-01 for 1% and 3%. The combined application of biochar along with PSB-01 can enhance soil properties (pH, CEC, SSA anoins and cations) and promote plant growth, offering a sustainable solution for saline-alkaline agricultural soil. This study employs an innovative approach by combining biochars derived from Parthenium and sewage sludge with phosphate-solubilizing bacteria (PSBs) to address multiple issues simultaneously: mitigating saline-alkaline soil, controlling Parthenium overgrowth, and managing sewage sludge problems.

{"title":"Improving phosphorus availability in saline-alkaline agricultural soils through biochar and phosphorus solubilizing bacteria (PSB) inoculation: a greenhouse experiment.","authors":"Muhammad Idress, Palwasha Khan, Javed Nawab, Ajmal Khan, Sardar Khan, Roshan Ali, Abdul Rehman, Arshad Alam, Suliman Ayaz, Haimanote Bayabil","doi":"10.1080/15226514.2025.2473594","DOIUrl":"https://doi.org/10.1080/15226514.2025.2473594","url":null,"abstract":"<p><p>Phosphorus (P) is an essential element for life on earth and a limiting nutrient for plant growth. However, its availability in saline-alkaline soils is significantly reduced, adversely affecting plant productivity. Saline-alkaline soil is a widespread problem that severely affects plant growth and productivity. The <i>Parthenium</i>-derived biochar (PB) and Sewage sludge-derived biochar (SSB) were analyzed for pH, electric conductivity (EC), cation exchange capacity (CEC), calorific values (CV), and surface area (SSA). The phosphate solubilizing index (SI; 2.83 mM) and quantitative analysis (521.5 µg ml<sup>-1</sup>) were suggested that PSB-01 efficient and the strain identified through 16S rRNA sequencing techniques. The experiment was based on completely randomized block design (CRBD) with triplicates. The results revealed that the application of PB, SSB, and PSB-01 significantly improved <i>Spinacia oleracea</i> (<i>S. oleracea</i>) growth as compared to the control. The highest growth was observed in the combined amendments as compared to single once in both 1% and 3%. The highest reduction in cation and anion concentrations was observed in the combined applications of PB, SSB and PSB-01 for 1% and 3%. The combined application of biochar along with PSB-01 can enhance soil properties (pH, CEC, SSA anoins and cations) and promote plant growth, offering a sustainable solution for saline-alkaline agricultural soil. This study employs an innovative approach by combining biochars derived from <i>Parthenium</i> and sewage sludge with phosphate-solubilizing bacteria (PSBs) to address multiple issues simultaneously: mitigating saline-alkaline soil, controlling <i>Parthenium</i> overgrowth, and managing sewage sludge problems.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-15"},"PeriodicalIF":3.4,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of exogenous amino acids on yttrium uptake and accumulation in tomato (Solanum lycopersicum).
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-04 DOI: 10.1080/15226514.2025.2472746
Ali Sajid, Sidra Naseer, Meiyu Ren, Jing Cui, Junliang Wu, Zhenggui Wei

This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (Solanum lycopersicum). To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g-1, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g-1. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h-1, which was significantly greater than those treated with amino acids (p < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L-1, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L-1 and 212.95 ± 13.65 μmol L-1. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.

{"title":"Effects of exogenous amino acids on yttrium uptake and accumulation in tomato (<i>Solanum lycopersicum</i>).","authors":"Ali Sajid, Sidra Naseer, Meiyu Ren, Jing Cui, Junliang Wu, Zhenggui Wei","doi":"10.1080/15226514.2025.2472746","DOIUrl":"https://doi.org/10.1080/15226514.2025.2472746","url":null,"abstract":"<p><p>This study investigated the impacts of exogenous amino acid supplementation on the uptake, translocation, and accumulation of yttrium (Y) in tomato plants (<i>Solanum lycopersicum)</i>. To understand how amino acids enhance nutrient uptake and plant growth by using Hoagland nutrient solution. The results indicated that the combination of Y with glutamic acid (Y + Glu) significantly increased Y concentration in the leaves to 28.5 ± 1.42 µg g<sup>-1</sup>, while the combination with histidine (Y + His) resulted in a markedly lower concentration of 2.7 ± 0.06 µg g<sup>-1</sup>. Notably, glutamic acid proved to be particularly effective in enhancing Y accumulation in xylem sap. The control plants exhibited a higher xylem sap flow rate of 0.27 ± 0.008 g h<sup>-1</sup>, which was significantly greater than those treated with amino acids (<i>p</i> < 0.05). Histidine levels were elevated in the Y + His treatment, reaching 194.78 ± 13.79 μmol L<sup>-1</sup>, while tryptophan and aspartic acid showed their highest concentrations in their respective treatments at 109.92 ± 14.43 μmol L<sup>-1</sup> and 212.95 ± 13.65 μmol L<sup>-1</sup>. These findings demonstrated that amino acid supplementation substantially enhanced the phytoextraction of Y in tomato plants, through the application of glutamic acid. Further exploration into the molecular mechanisms governing Y complexation and transport within plants through phytoremediation is needed.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-9"},"PeriodicalIF":3.4,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143541949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable Methylene Blue dye removal with activated carbon from Prosopis juliflora stem. 利用糙叶树茎中的活性碳实现可持续的亚甲基蓝染料去除。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-12 DOI: 10.1080/15226514.2024.2427377
Vasiraja N, Saravana Sathiya Prabhahar R, Joshua A, Senthil Maharaj Kennedy, Jeen Robert Rb

This study addresses the environmental challenge posed by the invasive Prosopis juliflora plant by converting its stem into activated carbon for the adsorption of Methylene Blue dye from water. The goal is to create an effective and sustainable wastewater treatment solution. Prosopis juliflora stems were harvested, cleaned, dried, carbonized, and activated with zinc chloride to create Prosopis Juliflora Stem Activated Carbon. This activated carbon was characterized using Brunauer-Emmett-Teller surface area analysis, Fourier transform infrared spectroscopy, and scanning electron microscope imaging. Results revealed a significant surface area of 158.107 m2/g and the presence of functional groups essential for adsorption processes. Batch adsorption experiments were conducted to determine the efficiency of activated carbon in removing Methylene Blue dye at various dosages and contact times. The highest adsorption efficiencies were 73.5% at 80 min, 90.1% at 60 min, and 90.65% at 50 min for dosages of 80, 100, and 120 mg, respectively. These findings show that Prosopis Juliflora Stem Activated Carbon is highly effective at removing Methylene Blue dye, providing a cost-effective and environmentally friendly method of wastewater treatment.

这项研究通过将入侵的糙叶木茎秆转化为活性炭来吸附水中的亚甲蓝染料,从而应对入侵糙叶木植物带来的环境挑战。目的是创造一种有效且可持续的废水处理解决方案。对罂粟茎进行采收、清洗、干燥、碳化,并用氯化锌进行活化,制成罂粟茎活性炭。使用布鲁瑙尔-埃美特-泰勒表面积分析法、傅立叶变换红外光谱法和扫描电子显微镜成像法对这种活性炭进行了表征。结果表明,该活性炭的表面积高达 158.107 m2/g,并且存在吸附过程所必需的官能团。进行了批量吸附实验,以确定活性炭在不同剂量和接触时间下去除亚甲基蓝染料的效率。用量为 80、100 和 120 毫克时,最高吸附效率分别为 80 分钟 73.5%、60 分钟 90.1%和 50 分钟 90.65%。这些研究结果表明,菊花茎活性炭对去除亚甲基蓝染料非常有效,是一种具有成本效益且环保的废水处理方法。
{"title":"Sustainable Methylene Blue dye removal with activated carbon from Prosopis juliflora stem.","authors":"Vasiraja N, Saravana Sathiya Prabhahar R, Joshua A, Senthil Maharaj Kennedy, Jeen Robert Rb","doi":"10.1080/15226514.2024.2427377","DOIUrl":"10.1080/15226514.2024.2427377","url":null,"abstract":"<p><p>This study addresses the environmental challenge posed by the invasive Prosopis juliflora plant by converting its stem into activated carbon for the adsorption of Methylene Blue dye from water. The goal is to create an effective and sustainable wastewater treatment solution. Prosopis juliflora stems were harvested, cleaned, dried, carbonized, and activated with zinc chloride to create Prosopis Juliflora Stem Activated Carbon. This activated carbon was characterized using Brunauer-Emmett-Teller surface area analysis, Fourier transform infrared spectroscopy, and scanning electron microscope imaging. Results revealed a significant surface area of 158.107 m<sup>2</sup>/g and the presence of functional groups essential for adsorption processes. Batch adsorption experiments were conducted to determine the efficiency of activated carbon in removing Methylene Blue dye at various dosages and contact times. The highest adsorption efficiencies were 73.5% at 80 min, 90.1% at 60 min, and 90.65% at 50 min for dosages of 80, 100, and 120 mg, respectively. These findings show that Prosopis Juliflora Stem Activated Carbon is highly effective at removing Methylene Blue dye, providing a cost-effective and environmentally friendly method of wastewater treatment.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"472-480"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources. 通过修复两种有机废物资源,三种混养微藻的生物能源产品螯合比例。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-12 DOI: 10.1080/15226514.2024.2424309
Delampady Vidya, Mohammad Sibtain Kadri, Aishwarya Mallikarjun Honnad, Nayana Karicheri, Sudhakar Muthiyal Prabakaran, Arunkumar Kulanthaiyesu

In this study, three microalgae species were cultivated using dairy and fish wastewater: Haematococcus pluvialis, Coelastrella saipanensis, and Chlorella sp. The process involved manipulating various physicochemical conditions, to determine optimal growth parameters. Our evaluation considered cell count, biomass productivity, specific growth rate, pigments, carbohydrates, proteins, lipid compositions, and cellulose stored in microalgae. A significant observation of highest cellulose accumulation was recorded in C. saipanensis cultivated in dairy waste (DW) medium (2.54 ± 0.042 µg/mg). In contrast, the species grown in fish waste (FW) media recorded a lower level (0.9405 ± 0.06 µg/mg) of cellulose. In DW, H. pluvialis and C. saipanensis accumulated substantial amounts of astaxanthin and carotenoid, respectively. Carbohydrate, protein, and lipid accumulation was maximized in DW culture, with H. pluvialis exhibiting a more incredible carbohydrate content. Lipid analysis showed as Chlorella sp. was capable of accumulating alpha-linolenic acid. The disparity may be attributed to DW's nutritional and mineral content, which encourages cellulose deposition. The FTIR analysis confirmed the accumulation of cellulose. These findings underscore the potential of DW and FW media as valuable resources for microalgal biofuel and ethanol production, offering a hopeful future for sustainable energy production.

在这项研究中,利用乳品废水和鱼类废水培养了三种微藻类:该过程涉及对各种理化条件的控制,以确定最佳生长参数。我们的评估考虑了细胞数、生物量生产率、特定生长率、色素、碳水化合物、蛋白质、脂质成分以及微藻中储存的纤维素。在奶制品废料(DW)培养基中培养的塞班藻(C. saipanensis)的纤维素积累量最高(2.54 ± 0.042 µg/mg),这一点值得注意。相比之下,在鱼废料(FW)培养基中生长的物种纤维素含量较低(0.9405 ± 0.06 µg/mg)。在 DW 培养基中,H. pluvialis 和 C. saipanensis 分别积累了大量虾青素和类胡萝卜素。在 DW 培养液中,碳水化合物、蛋白质和脂质的积累量最大,其中 H. pluvialis 的碳水化合物含量更高。脂质分析表明,小球藻能够积累α-亚麻酸。这种差异可能是由于 DW 的营养和矿物质含量促进了纤维素的沉积。傅立叶变换红外分析证实了纤维素的积累。这些发现强调了 DW 和 FW 培养基作为微藻生物燃料和乙醇生产的宝贵资源的潜力,为可持续能源生产提供了一个充满希望的未来。
{"title":"Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources.","authors":"Delampady Vidya, Mohammad Sibtain Kadri, Aishwarya Mallikarjun Honnad, Nayana Karicheri, Sudhakar Muthiyal Prabakaran, Arunkumar Kulanthaiyesu","doi":"10.1080/15226514.2024.2424309","DOIUrl":"10.1080/15226514.2024.2424309","url":null,"abstract":"<p><p>In this study, three microalgae species were cultivated using dairy and fish wastewater: <i>Haematococcus pluvialis, Coelastrella saipanensis</i>, and <i>Chlorella</i> sp. The process involved manipulating various physicochemical conditions, to determine optimal growth parameters. Our evaluation considered cell count, biomass productivity, specific growth rate, pigments, carbohydrates, proteins, lipid compositions, and cellulose stored in microalgae. A significant observation of highest cellulose accumulation was recorded in <i>C. saipanensis</i> cultivated in dairy waste (DW) medium (2.54 ± 0.042 µg/mg). In contrast, the species grown in fish waste (FW) media recorded a lower level (0.9405 ± 0.06 µg/mg) of cellulose. In DW, <i>H. pluvialis</i> and <i>C. saipanensis</i> accumulated substantial amounts of astaxanthin and carotenoid, respectively. Carbohydrate, protein, and lipid accumulation was maximized in DW culture, with <i>H. pluvialis</i> exhibiting a more incredible carbohydrate content. Lipid analysis showed as <i>Chlorella</i> sp. was capable of accumulating alpha-linolenic acid. The disparity may be attributed to DW's nutritional and mineral content, which encourages cellulose deposition. The FTIR analysis confirmed the accumulation of cellulose. These findings underscore the potential of DW and FW media as valuable resources for microalgal biofuel and ethanol production, offering a hopeful future for sustainable energy production.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"422-436"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shields against pollution: phytoremediation and impact of particulate matter on trees at Wigry National Park, Poland. 抵御污染的盾牌:波兰 Wigry 国家公园的植物修复和颗粒物对树木的影响。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-20 DOI: 10.1080/15226514.2024.2426771
Robert Popek, Arkadiusz Przybysz, Adrian Łukowski, Marlena Baranowska, Bartosz Bułaj, Maria Hauke-Kowalska, Radosław Jagiełło, Robert Korzeniewicz, Hanna Moniuszko, Piotr Robakowski, Marcin Zadworny, Wojciech Kowalkowski

This study examines the impact of airborne particulate matter (PM) and associated trace elements (TEs) on deciduous and coniferous trees at the edge of Wigry National Park in northeast Poland, focusing on pollution levels and the potential for phytoremediation. Researchers measured PM concentrations in the air and on the leaves of Picea abies, Quercus robur, and Corylus avellana, along with photosynthetic indicators (Fv/Fm ratio and performance index). The study found significant differences in pollution intensity across areas with varying levels of human activity. P. abies, an evergreen species, accumulated the highest PM levels (>200 μg/cm2), while Q. robur had the highest accumulation among deciduous trees (>50 μg/cm2). Trace elements such as Fe, Cu, Zn, Sr, and Cd were detected, with C. avellana being the most efficient in accumulating Cd (up to 7.5 mg/kg). The accumulation of pollutants correlated with reduced photosynthetic efficiency in trees closest to pollution sources. The findings suggest that strategically planting specific tree species can help mitigate air pollution in national parks and protect sensitive vegetation. Future research should explore the long-term effects of PM on forest health and the role of different species in phytoremediation.

本研究探讨了空气中的颗粒物(PM)和相关微量元素(TEs)对波兰东北部威格利国家公园边缘落叶树和针叶树的影响,重点关注污染水平和植物修复的潜力。研究人员测量了空气中的可吸入颗粒物浓度、落叶松、栎树和榛树叶片上的可吸入颗粒物浓度以及光合作用指标(Fv/Fm 比率和性能指数)。研究发现,不同人类活动地区的污染强度存在明显差异。常绿树种欧鼠李积累的可吸入颗粒物含量最高(>200 μg/cm2),而落叶乔木栎积累的可吸入颗粒物含量最高(>50 μg/cm2)。检测到了铁、铜、锌、锶和镉等微量元素,其中 C. avellana 的镉积累效率最高(达 7.5 毫克/千克)。污染物的积累与离污染源最近的树木光合作用效率降低有关。研究结果表明,战略性地种植特定树种有助于减轻国家公园的空气污染,保护敏感植被。未来的研究应探索可吸入颗粒物对森林健康的长期影响以及不同树种在植物修复中的作用。
{"title":"Shields against pollution: phytoremediation and impact of particulate matter on trees at Wigry National Park, Poland.","authors":"Robert Popek, Arkadiusz Przybysz, Adrian Łukowski, Marlena Baranowska, Bartosz Bułaj, Maria Hauke-Kowalska, Radosław Jagiełło, Robert Korzeniewicz, Hanna Moniuszko, Piotr Robakowski, Marcin Zadworny, Wojciech Kowalkowski","doi":"10.1080/15226514.2024.2426771","DOIUrl":"10.1080/15226514.2024.2426771","url":null,"abstract":"<p><p>This study examines the impact of airborne particulate matter (PM) and associated trace elements (TEs) on deciduous and coniferous trees at the edge of Wigry National Park in northeast Poland, focusing on pollution levels and the potential for phytoremediation. Researchers measured PM concentrations in the air and on the leaves of <i>Picea abies</i>, <i>Quercus robur</i>, and <i>Corylus avellana</i>, along with photosynthetic indicators (Fv/Fm ratio and performance index). The study found significant differences in pollution intensity across areas with varying levels of human activity. <i>P. abies</i>, an evergreen species, accumulated the highest PM levels (>200 μg/cm<sup>2</sup>), while <i>Q. robur</i> had the highest accumulation among deciduous trees (>50 μg/cm<sup>2</sup>). Trace elements such as Fe, Cu, Zn, Sr, and Cd were detected, with <i>C. avellana</i> being the most efficient in accumulating Cd (up to 7.5 mg/kg). The accumulation of pollutants correlated with reduced photosynthetic efficiency in trees closest to pollution sources. The findings suggest that strategically planting specific tree species can help mitigate air pollution in national parks and protect sensitive vegetation. Future research should explore the long-term effects of PM on forest health and the role of different species in phytoremediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"448-461"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosorption potential of basella Alba (Malabar spinach) for removal of fluoride in aqueous solutions based on its phytoremediation applications; a review. 马拉巴尔菠菜(basella Alba)去除水溶液中氟化物的生物吸附潜力,基于其植物修复应用;综述。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-22 DOI: 10.1080/15226514.2024.2427378
Beatrice C Langat, Okoti P Aluora

This review article explores the applications of Basella alba (Malabar spinach), a fast-growing vine plant known for its numerous health benefits, culinary uses, and potential in dye and oil production. Fluoride contamination in water poses a significant global health and environmental challenge, particularly in regions where natural and industrial activities lead to elevated fluoride levels. Among its varied applications, B. alba has shown significant promise in the phytoremediation of contaminants in both water and soil, owing to its hyper accumulating capacities. The plant has a transfer factor value of more than 1 which means that there is higher accumulation of contaminants in parts of the plant than in soil. The objective of this review is to assess the feasibility of B. alba in contributing to sustainable water management solutions for fluoride contamination, while offering a comprehensive evaluation of its environmental remediation potential. The article examines the biosorption capabilities of B. alba based on its established use in phytoremediation, offering insights into its suitability for addressing fluoride contamination in water. This article is organized into sections starting with an introduction, which brings explains the global challenge of fluoride, and different treatment techniques justifying why biosorption needs to be considered, cases of application of phytoremediation using B. Alba, and finally exploring the success factors for plants that have been applied for both biosorption and phytoremediation.

这篇综述文章探讨了白芭蕉(马拉巴尔菠菜)的应用,白芭蕉是一种生长迅速的藤本植物,以其众多的健康益处、烹饪用途以及染料和油脂生产潜力而闻名。水中的氟污染对全球健康和环境构成了重大挑战,尤其是在自然和工业活动导致氟含量升高的地区。在白桦属植物的各种应用中,由于其超强的蓄积能力,白桦属植物在对水和土壤中的污染物进行植物修复方面显示出了巨大的潜力。这种植物的转移因子值超过 1,这意味着污染物在植物部分的积累量高于在土壤中的积累量。本综述的目的是评估白桦属植物为氟污染的可持续水管理解决方案做出贡献的可行性,同时对其环境修复潜力进行全面评估。文章根据白桦属植物在植物修复中的既定用途,研究了白桦属植物的生物吸附能力,深入探讨了其在解决水中氟污染方面的适用性。本文分为几个部分,首先是导言,介绍了氟的全球性挑战、不同的处理技术,说明为什么需要考虑生物吸附,然后是使用阿尔巴仙人掌进行植物修复的应用案例,最后探讨了已应用于生物吸附和植物修复的植物的成功因素。
{"title":"Biosorption potential of <i>basella Alba</i> (Malabar spinach) for removal of fluoride in aqueous solutions based on its phytoremediation applications; a review.","authors":"Beatrice C Langat, Okoti P Aluora","doi":"10.1080/15226514.2024.2427378","DOIUrl":"10.1080/15226514.2024.2427378","url":null,"abstract":"<p><p>This review article explores the applications of Basella alba (Malabar spinach), a fast-growing vine plant known for its numerous health benefits, culinary uses, and potential in dye and oil production. Fluoride contamination in water poses a significant global health and environmental challenge, particularly in regions where natural and industrial activities lead to elevated fluoride levels. Among its varied applications, <i>B. alba</i> has shown significant promise in the phytoremediation of contaminants in both water and soil, owing to its hyper accumulating capacities. The plant has a transfer factor value of more than 1 which means that there is higher accumulation of contaminants in parts of the plant than in soil. The objective of this review is to assess the feasibility of B. alba in contributing to sustainable water management solutions for fluoride contamination, while offering a comprehensive evaluation of its environmental remediation potential. The article examines the biosorption capabilities of B. alba based on its established use in phytoremediation, offering insights into its suitability for addressing fluoride contamination in water. This article is organized into sections starting with an introduction, which brings explains the global challenge of fluoride, and different treatment techniques justifying why biosorption needs to be considered, cases of application of phytoremediation using B. Alba, and finally exploring the success factors for plants that have been applied for both biosorption and phytoremediation.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"481-491"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation potential of potted plant species against vehicular emissions. 盆栽植物物种对车辆排放物的植物修复潜力。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-15 DOI: 10.1080/15226514.2024.2427387
Laraib Sana, Muhammad Farhan, Amina Kanwal, Maqsood Ahmad, Zahid Ali Butt, Abdul Wahid

Urbanization and industrialization are exponentially deteriorating air quality, ecosystems, and human health. Phytoremediation is cost cost-effective, sustainable, and nature-based solution against air pollution. This study is designed to evaluate four species, Chlorophytum comosum, Rhapis excelsa, Spathiphyllum wallisii, and Ficus benjamina for their phytoremediation potential. The experimental setup consisted of a sealed chamber to place potted plants and equipment, it was also connected to the vehicular exhaust pipe. The Air Pollution Tolerance Index was highest for F. benjamina (12.19) and lowest for Rhapis excels (8.58). C. comosum has the highest VOC removal efficiency (90%, 0.172 ppm h-1). NOx remediation was highest by F. benjamina with 0.057 ppm h-1 (77%) removal efficiency. SOx and CO were remediated more efficiently by C. comosum, as 89%, (0.18 ppm h-1) and 80% (0.23 ppm h-1), respectively. R. excelsa reduced a higher concentration of NH3 (77%, 0.06 ppm h-1) compared to other species. R. excelsa and S. wallisii may serve as bio-indicator species. These findings provide a sustainable, natural, economical, and eco-friendly way to mitigate air pollution. F. benjamina and C. comosum are suitable species for urban landscapes, green spaces, urban plantations, and green walls to curb air pollutants due to traffic and industries.

城市化和工业化使空气质量、生态系统和人类健康急剧恶化。植物修复是一种成本效益高、可持续和基于自然的空气污染解决方案。本研究旨在评估 Chlorophytum comosum、Rhapis excelsa、Spathiphyllum wallisii 和 Ficus benjamina 四种植物的植物修复潜力。实验装置包括一个放置盆栽植物和设备的密封舱,并与汽车排气管相连。空气污染耐受指数最高的是 F. benjamina(12.19),最低的是 Rhapis excels(8.58)。C. comosum 的挥发性有机化合物去除效率最高(90%,0.172 ppm h-1)。F. benjamina 的氮氧化物去除率最高,为 0.057 ppm h-1 (77%)。C. comosum 对 SOx 和 CO 的净化效率更高,分别为 89% (0.18 ppm h-1) 和 80% (0.23 ppm h-1)。与其他物种相比,R. excelsa 能减少更高浓度的 NH3(77%,0.06 ppm h-1)。R. excelsa 和 S. wallisii 可作为生物指示物种。这些发现为缓解空气污染提供了一种可持续、自然、经济和生态友好的方法。F. benjamina 和 C. comosum 是适用于城市景观、绿地、城市种植园和绿墙的物种,可以抑制交通和工业造成的空气污染。
{"title":"Phytoremediation potential of potted plant species against vehicular emissions.","authors":"Laraib Sana, Muhammad Farhan, Amina Kanwal, Maqsood Ahmad, Zahid Ali Butt, Abdul Wahid","doi":"10.1080/15226514.2024.2427387","DOIUrl":"10.1080/15226514.2024.2427387","url":null,"abstract":"<p><p>Urbanization and industrialization are exponentially deteriorating air quality, ecosystems, and human health. Phytoremediation is cost cost-effective, sustainable, and nature-based solution against air pollution. This study is designed to evaluate four species, <i>Chlorophytum comosum</i>, <i>Rhapis excels</i>a, <i>Spathiphyllum wallisii</i>, and <i>Ficus benjamina</i> for their phytoremediation potential. The experimental setup consisted of a sealed chamber to place potted plants and equipment, it was also connected to the vehicular exhaust pipe. The Air Pollution Tolerance Index was highest for <i>F. benjamina</i> (12.19) and lowest for <i>Rhapis excels</i> (8.58)<i>. C. comosum</i> has the highest VOC removal efficiency (90%, 0.172 ppm h<sup>-1</sup>). NO<sub>x</sub> remediation was highest by <i>F. benjamina</i> with 0.057 ppm h<sup>-1</sup> (77%) removal efficiency. SO<sub>x</sub> and CO were remediated more efficiently by <i>C. comosum,</i> as 89%, (0.18 ppm h<sup>-1</sup>) and 80% (0.23 ppm h<sup>-1</sup>), respectively. <i>R. excelsa</i> reduced a higher concentration of NH<sub>3</sub> (77%, 0.06 ppm h<sup>-1</sup>) compared to other species. <i>R. excelsa</i> and <i>S. wallisii</i> may serve as bio-indicator species. These findings provide a sustainable, natural, economical, and eco-friendly way to mitigate air pollution. <i>F. benjamina</i> and <i>C. comosum</i> are suitable species for urban landscapes, green spaces, urban plantations, and green walls to curb air pollutants due to traffic and industries.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"526-533"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metal phyto-accumulation potential, biochemical response, and health risk assessment of selected wheat varieties grown in municipal sewage sludge amended soils. 在城市污水污泥改良土壤中种植的某些小麦品种的金属植物积累潜力、生化反应和健康风险评估。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-19 DOI: 10.1080/15226514.2024.2427381
Uswa Ikram, Rizwana Nawaz, Zeshan Ali, Muhammad Sohail, Hina Waheed, Amer Mumtaz, Kiran Yasmin Khan

Present study identified metal accumulation potential, biochemical, growth, and human health risk attributes of wheat varieties (Zincol-16, NARC-09, NARC-11, Pakistan-13, Borlaug-16) cultivated in sewage sludge amended soils, that is, 80% soil + 20% sludge (C), 90% soil + 10% sludge (B) and 100% soil (control, A). Metal accumulation significantly varied (p < 0.05) among wheat varieties and the accretion pattern was roots > straw > grains. The Borlaug-16 was found most efficient for biochemical attributes, that is, proline (0.84), sugar (2.76) and total chlorophyll (2.35) in mg/g amongst selected varieties. Among treatments, maximum mean total chlorophyll (2.18), carotenoids (0.97), sugar (2.88) in mg/g, plant height (76.04 cm), weight per 1000 kernel (55 g) and spike length (4.17 cm) were recorded in B followed by A > C. However, mean membrane stability index%, that is, A (82.76)>B (75.26)>C (54.35) and mean proline contents, that is, C (0.49)>B (0.39)>A (0.29) in mg/g were recorded respectively. Mean hazard quotient and hazard index (HI) calculated on the basis of grain metal contents followed the trend, that is, C > B > A. The HI results revealed highest and lowest health risks associated with the consumption of Zincol-16 and Borlaug-16, respectively. The 'Borlaug-16' and 'sludge treatment B' are recommended for cultivation and as rate of application, respectively, for ensuring food safety and agro-ecological health.

本研究确定了在污水污泥改良土壤(即 80% 的土壤 + 20% 的污泥(C)、90% 的土壤 + 10% 的污泥(B)和 100% 的土壤(对照,A))中种植的小麦品种(Zincol-16、NARC-09、NARC-11、Pakistan-13 和 Borlaug-16)的金属积累潜力、生化、生长和人类健康风险属性。金属积累量存在明显差异(p 稻草 > 谷物)。在所选品种中,Borlaug-16 的生化属性最有效,即脯氨酸(0.84)、糖(2.76)和总叶绿素(2.35)(以毫克/克计)。在各处理中,B 的叶绿素总量(2.18)、类胡萝卜素(0.97)、糖分(2.88)(毫克/克)、株高(76.04 厘米)、千粒重(55 克)和穗长(4.17 厘米)的平均值最高,其次是 A > C。然而,平均膜稳定性指数%(即 A(82.76)>B(75.26)>C(54.35))和平均脯氨酸含量(即 C(0.49)>B(0.39)>A(0.29),单位分别为毫克/克。根据谷物金属含量计算出的平均危害商数和危害指数(HI)呈现出 C > B > A 的趋势。危害指数结果显示,食用 Zincol-16 和 Borlaug-16 的健康风险分别最高和最低。为确保食品安全和农业生态健康,建议分别采用 "Borlaug-16 "和 "污泥处理 B "进行种植和施用。
{"title":"Metal phyto-accumulation potential, biochemical response, and health risk assessment of selected wheat varieties grown in municipal sewage sludge amended soils.","authors":"Uswa Ikram, Rizwana Nawaz, Zeshan Ali, Muhammad Sohail, Hina Waheed, Amer Mumtaz, Kiran Yasmin Khan","doi":"10.1080/15226514.2024.2427381","DOIUrl":"10.1080/15226514.2024.2427381","url":null,"abstract":"<p><p>Present study identified metal accumulation potential, biochemical, growth, and human health risk attributes of wheat varieties (Zincol-16, NARC-09, NARC-11, Pakistan-13, Borlaug-16) cultivated in sewage sludge amended soils, that is, 80% soil + 20% sludge (C), 90% soil + 10% sludge (B) and 100% soil (control, A). Metal accumulation significantly varied (<i>p</i> < 0.05) among wheat varieties and the accretion pattern was roots > straw > grains. The Borlaug-16 was found most efficient for biochemical attributes, that is, proline (0.84), sugar (2.76) and total chlorophyll (2.35) in mg/g amongst selected varieties. Among treatments, maximum mean total chlorophyll (2.18), carotenoids (0.97), sugar (2.88) in mg/g, plant height (76.04 cm), weight per 1000 kernel (55 g) and spike length (4.17 cm) were recorded in B followed by A > C. However, mean membrane stability index%, that is, A (82.76)>B (75.26)>C (54.35) and mean proline contents, that is, C (0.49)>B (0.39)>A (0.29) in mg/g were recorded respectively. Mean hazard quotient and hazard index (HI) calculated on the basis of grain metal contents followed the trend, that is, C > B > A. The HI results revealed highest and lowest health risks associated with the consumption of Zincol-16 and Borlaug-16, respectively. The 'Borlaug-16' and 'sludge treatment B' are recommended for cultivation and as rate of application, respectively, for ensuring food safety and agro-ecological health.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"492-504"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142667502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai. 上海铜、铅和锌污染土壤植物修复中木本物种的快速选择策略。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-11 DOI: 10.1080/15226514.2024.2426772
Qian Zhang, Yanchun Wang, Kankan Shang, Hailan Fang, Guowei Zhang, Werther Guidi Nissim

The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.59 to 27.45 mg·kg-1 for Cu, 2.79 to 16.75 mg·kg-1 for Pb and 22.13 to 185.72 mg·kg-1 for Zn in the stem tissues depending on the species. Pterocarya stenoptera, Paulownia fortunei and Salix matsudana were identified as the top performers in terms of overall phytoextraction capacity. Notably, their capacity to transport zinc exceeded that of copper and lead. The enrichment of copper, lead and zinc in the soil showed a synergistic effect in the presence of heavy metal. The distribution of heavy metals within plant tissues was affected by water content and the inherent toxicity of metals. The study highlights that the accumulation of tree biomass and water content in the stem play a significant role in determining the amount of heavy metals phytoextracted. This insight offers a quick method for the rapid selection of woody species for phytoremediation in urban soils contaminated with heavy metals.

利用木本植物修复重金属污染土壤是一种环保且经济可行的策略。本研究调查了 15 种木本植物对污染土壤中铜、铅和锌的植物萃取能力。结果表明,所有物种都具有植物萃取能力,不同物种茎组织中的金属浓度分别为:铜 5.59 至 27.45 毫克-千克-1、铅 2.79 至 16.75 毫克-千克-1、锌 22.13 至 185.72 毫克-千克-1。紫檀、泡桐和沙柳被认定为植物总体萃取能力最强的植物。值得注意的是,它们运输锌的能力超过了运输铜和铅的能力。土壤中铜、铅和锌的富集显示出重金属存在时的协同效应。重金属在植物组织中的分布受含水量和金属固有毒性的影响。该研究强调,树木生物量的积累和茎干中的含水量在决定重金属植物提取量方面起着重要作用。这一见解为在受重金属污染的城市土壤中快速选择用于植物修复的木本物种提供了一种快速方法。
{"title":"Strategy on rapid selection of woody species for phytoremediation in soils contaminated with copper, lead and zinc in Shanghai.","authors":"Qian Zhang, Yanchun Wang, Kankan Shang, Hailan Fang, Guowei Zhang, Werther Guidi Nissim","doi":"10.1080/15226514.2024.2426772","DOIUrl":"10.1080/15226514.2024.2426772","url":null,"abstract":"<p><p>The use of woody species for the remediation of heavy metal-contaminated soils is an environmentally friendly and economically viable strategy. This study investigates the phytoextraction abilities of 15 woody species for copper, lead and zinc in contaminated soil. The results indicated that all species showed phytoextraction ability, with metal concentrations varying from 5.59 to 27.45 mg·kg<sup>-1</sup> for Cu, 2.79 to 16.75 mg·kg<sup>-1</sup> for Pb and 22.13 to 185.72 mg·kg<sup>-1</sup> for Zn in the stem tissues depending on the species. <i>Pterocarya stenoptera</i>, <i>Paulownia fortunei</i> and <i>Salix matsudana</i> were identified as the top performers in terms of overall phytoextraction capacity. Notably, their capacity to transport zinc exceeded that of copper and lead. The enrichment of copper, lead and zinc in the soil showed a synergistic effect in the presence of heavy metal. The distribution of heavy metals within plant tissues was affected by water content and the inherent toxicity of metals. The study highlights that the accumulation of tree biomass and water content in the stem play a significant role in determining the amount of heavy metals phytoextracted. This insight offers a quick method for the rapid selection of woody species for phytoremediation in urban soils contaminated with heavy metals.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"462-471"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of multi-metal tolerant plant growth promoting bacteria (PGPB) Stutzerimonas stutzeri WA4 and its assistance on phytoextraction of heavy metals (Cu, Ag and Pb). 多金属耐受性植物生长促进菌(PGPB)Stutzerimonas stutzeri WA4 的筛选及其对重金属(铜、银和铅)植物萃取的帮助。
IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Pub Date : 2025-03-01 Epub Date: 2024-11-13 DOI: 10.1080/15226514.2024.2427384
Koushika Saravanan, Kavya Vellingiri, Preethi Kathirvel

In the current study, coal fly ash contaminated soil was collected in and around Mettur Thermal Power Station, Salem district, Tamil Nadu. The metal concentrations present in the coal fly ash soil samples were analyzed and also used for the isolation of bacteria. The isolates were screened for their multi-metal resistance against three heavy metals (Cu, Ag and Pb) and plant growth-promoting traits (siderophore, phosphate solubilization, IAA, cellulase, HCN, and ammonia production). Among the 12 isolates, the WA4 strain revealed promising results for both metal-resistant and plant growth-promoting activity. In the in vitro pot experiment, Spinacia oleracea (Palak), Red amaranth (Red spinach), Capsicum annum (Green chilly) and Solanum melongena (Brinjal) plants were grown in ash-contaminated soil treated with different concentrations of selected bacterial inoculum (25%, 50%, 75% and 100%) along with a control pot. The results of the study indicated that the ash-contaminated soil treated with bacterial inoculum distinctly increased the growth of plants when compared to untreated soil (control). Thus, the best-performing strain WA4 could be utilized as a good bio-stimulant for promoting the growth of selected plants in the re-vegetation programs of ash-contaminated soil.

本研究在泰米尔纳德邦塞勒姆地区梅图尔热电站及其周围收集了受粉煤灰污染的土壤。对粉煤灰土壤样本中的金属浓度进行了分析,并用于分离细菌。对分离菌株进行了筛选,以检测其对三种重金属(铜、银和铅)的多金属抗性以及促进植物生长的性状(苷元、磷酸盐溶解、IAA、纤维素酶、HCN 和氨的产生)。在这 12 个分离株中,WA4 菌株在抗金属和促进植物生长活性方面都表现出良好的结果。在离体盆栽实验中,将菠菜(Palak)、红苋菜(Red spinach)、辣椒(Green chilly)和茄子(Solanum melongena)等植物种植在用不同浓度的选定细菌接种体(25%、50%、75% 和 100%)处理过的受灰尘污染的土壤中,同时使用一个对照盆栽。研究结果表明,与未经处理的土壤(对照)相比,用细菌接种体处理过的灰分污染土壤明显提高了植物的生长速度。因此,表现最好的菌株 WA4 可以作为一种良好的生物刺激剂,在灰烬污染土壤的植被恢复计划中促进选定植物的生长。
{"title":"Screening of multi-metal tolerant plant growth promoting bacteria (PGPB) <i>Stutzerimonas stutzeri</i> WA4 and its assistance on phytoextraction of heavy metals (Cu, Ag and Pb).","authors":"Koushika Saravanan, Kavya Vellingiri, Preethi Kathirvel","doi":"10.1080/15226514.2024.2427384","DOIUrl":"10.1080/15226514.2024.2427384","url":null,"abstract":"<p><p>In the current study, coal fly ash contaminated soil was collected in and around Mettur Thermal Power Station, Salem district, Tamil Nadu. The metal concentrations present in the coal fly ash soil samples were analyzed and also used for the isolation of bacteria. The isolates were screened for their multi-metal resistance against three heavy metals (Cu, Ag and Pb) and plant growth-promoting traits (siderophore, phosphate solubilization, IAA, cellulase, HCN, and ammonia production). Among the 12 isolates, the WA4 strain revealed promising results for both metal-resistant and plant growth-promoting activity. In the <i>in vitro</i> pot experiment, <i>Spinacia oleracea</i> (Palak), <i>Red amaranth</i> (Red spinach), <i>Capsicum annum</i> (Green chilly) and <i>Solanum melongena</i> (Brinjal) plants were grown in ash-contaminated soil treated with different concentrations of selected bacterial inoculum (25%, 50%, 75% and 100%) along with a control pot. The results of the study indicated that the ash-contaminated soil treated with bacterial inoculum distinctly increased the growth of plants when compared to untreated soil (control). Thus, the best-performing strain WA4 could be utilized as a good bio-stimulant for promoting the growth of selected plants in the re-vegetation programs of ash-contaminated soil.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"505-525"},"PeriodicalIF":3.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142620183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Phytoremediation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1