Madonna Rica Anggelia, Hui-Yun Cheng, Cheng-Hung Lin
{"title":"Thermosensitive Hydrogels as Targeted and Controlled Drug Delivery Systems: Potential Applications in Transplantation","authors":"Madonna Rica Anggelia, Hui-Yun Cheng, Cheng-Hung Lin","doi":"10.1002/mabi.202400064","DOIUrl":null,"url":null,"abstract":"<p>Drug delivery in transplantation plays a vital role in promoting graft survival, preventing rejection, managing complications, and contributing to positive patient outcomes. Targeted and controlled drug delivery can minimize systemic effects. Thermosensitive hydrogels, due to their unique sol-gel transition properties triggered by thermo-stimuli, have attracted significant research interest as a potential drug delivery system in transplantation. This review describes the current status, characteristics, and recent applications of thermosensitive hydrogels for drug delivery. Studies aimed at improving allotransplantation outcomes using thermosensitive hydrogels are then elaborated on. Finally, the challenges and opportunities associated with their use are discussed. Understanding the progress of research will serve as a guide for future improvements in their application as a means of targeted and controlled drug delivery in translational therapeutic applications for transplantation.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"24 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug delivery in transplantation plays a vital role in promoting graft survival, preventing rejection, managing complications, and contributing to positive patient outcomes. Targeted and controlled drug delivery can minimize systemic effects. Thermosensitive hydrogels, due to their unique sol-gel transition properties triggered by thermo-stimuli, have attracted significant research interest as a potential drug delivery system in transplantation. This review describes the current status, characteristics, and recent applications of thermosensitive hydrogels for drug delivery. Studies aimed at improving allotransplantation outcomes using thermosensitive hydrogels are then elaborated on. Finally, the challenges and opportunities associated with their use are discussed. Understanding the progress of research will serve as a guide for future improvements in their application as a means of targeted and controlled drug delivery in translational therapeutic applications for transplantation.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.