Nicola Thibault, Stéphanie D'amours, Philippe Albouy, Simon Grondin
{"title":"Musical Expertise Influences the Processing of Short and Long Auditory Time Intervals: An Electroencephalography Study.","authors":"Nicola Thibault, Stéphanie D'amours, Philippe Albouy, Simon Grondin","doi":"10.1162/jocn_a_02219","DOIUrl":null,"url":null,"abstract":"<p><p>Musical expertise has been proven to be beneficial for time perception abilities, with musicians outperforming nonmusicians in several explicit timing tasks. However, it is unclear how musical expertise impacts implicit time perception. Twenty nonmusicians and 15 expert musicians participated in an EEG recording during a passive auditory oddball paradigm with 0.8- and 1.6-sec standard time intervals and deviant intervals that were either played earlier or delayed relative to the standard interval. We first confirmed that, as was the case for nonmusicians, musicians use different neurofunctional processes to support the perception of short (below 1.2 sec) and long (above 1.2 sec) time intervals: Whereas deviance detection for long intervals elicited a N1 component, P2 was associated with deviance detection for short time intervals. Interestingly, musicians did not elicit a contingent negative variation (CNV) for longer intervals but show additional components of deviance detection such as (i) an attention-related N1 component, even for deviants occurring during short intervals; (ii) a N2 component for above and below 1.2-sec deviance detection, and (iii) a P2 component for above 1.2-sec deviance detection. We propose that the N2 component is a marker of explicit deviance detection and acts as an inhibitory/conflict monitoring of the deviance. This hypothesis was supported by a positive correlation between CNV and N2 amplitudes: The CNV reflects the temporal accumulator and can predict explicit detection of the deviance. In expert musicians, a N2 component is observable without CNV, suggesting that deviance detection is optimized and does not require the temporal accumulator. Overall, this study suggests that musical expertise is associated with optimized implicit time perception.</p>","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/jocn_a_02219","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Musical expertise has been proven to be beneficial for time perception abilities, with musicians outperforming nonmusicians in several explicit timing tasks. However, it is unclear how musical expertise impacts implicit time perception. Twenty nonmusicians and 15 expert musicians participated in an EEG recording during a passive auditory oddball paradigm with 0.8- and 1.6-sec standard time intervals and deviant intervals that were either played earlier or delayed relative to the standard interval. We first confirmed that, as was the case for nonmusicians, musicians use different neurofunctional processes to support the perception of short (below 1.2 sec) and long (above 1.2 sec) time intervals: Whereas deviance detection for long intervals elicited a N1 component, P2 was associated with deviance detection for short time intervals. Interestingly, musicians did not elicit a contingent negative variation (CNV) for longer intervals but show additional components of deviance detection such as (i) an attention-related N1 component, even for deviants occurring during short intervals; (ii) a N2 component for above and below 1.2-sec deviance detection, and (iii) a P2 component for above 1.2-sec deviance detection. We propose that the N2 component is a marker of explicit deviance detection and acts as an inhibitory/conflict monitoring of the deviance. This hypothesis was supported by a positive correlation between CNV and N2 amplitudes: The CNV reflects the temporal accumulator and can predict explicit detection of the deviance. In expert musicians, a N2 component is observable without CNV, suggesting that deviance detection is optimized and does not require the temporal accumulator. Overall, this study suggests that musical expertise is associated with optimized implicit time perception.