Modeling fracture in multilayered teeth using the finite volume-based phase field method

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2024-07-08 DOI:10.1016/j.jmbbm.2024.106655
Xueliang Yang , Entang Wang , Wei Sun , Fudong Zhu , Ning Guo
{"title":"Modeling fracture in multilayered teeth using the finite volume-based phase field method","authors":"Xueliang Yang ,&nbsp;Entang Wang ,&nbsp;Wei Sun ,&nbsp;Fudong Zhu ,&nbsp;Ning Guo","doi":"10.1016/j.jmbbm.2024.106655","DOIUrl":null,"url":null,"abstract":"<div><p>The present work, utilizing the finite volume-based phase field method (FV-based PFM), aims to investigate the initiation and propagation of cracks in the second molar of the left mandible under occlusal loading. By reconstructing cone beam computed tomography scans of the patient, the true morphology and internal mesostructure of the entire tooth are implemented into numerical simulations, including both 2D slice models and a realistic 3D model. Weibull functions are introduced to represent the tooth's heterogeneity, enabling the stochastic distribution characteristics of mechanical parameters. The results indicate that stronger heterogeneity leads to greater crack tortuosity, uneven damage distribution, and lower fracture stress. Additionally, different cusp angles (50° and 70°) and pre-existing fissure morphologies (i.e., U-shape, V-shape, IK-shape, I-shape, and IY-shape) also significantly affect the mechanical performance of the tooth. The study reveals that different cusp angles affect the location of crack initiation. Overall, this work demonstrates the utility of the FV-based PFM framework in capturing the complex fracture behavior of teeth, which can contribute to improved clinical treatment and prevention of tooth fractures. The insights gained from this study can inform the design of dental crown restorations and the optimization of cusp inclination and contact during clinical occlusal adjustments.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S175161612400287X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present work, utilizing the finite volume-based phase field method (FV-based PFM), aims to investigate the initiation and propagation of cracks in the second molar of the left mandible under occlusal loading. By reconstructing cone beam computed tomography scans of the patient, the true morphology and internal mesostructure of the entire tooth are implemented into numerical simulations, including both 2D slice models and a realistic 3D model. Weibull functions are introduced to represent the tooth's heterogeneity, enabling the stochastic distribution characteristics of mechanical parameters. The results indicate that stronger heterogeneity leads to greater crack tortuosity, uneven damage distribution, and lower fracture stress. Additionally, different cusp angles (50° and 70°) and pre-existing fissure morphologies (i.e., U-shape, V-shape, IK-shape, I-shape, and IY-shape) also significantly affect the mechanical performance of the tooth. The study reveals that different cusp angles affect the location of crack initiation. Overall, this work demonstrates the utility of the FV-based PFM framework in capturing the complex fracture behavior of teeth, which can contribute to improved clinical treatment and prevention of tooth fractures. The insights gained from this study can inform the design of dental crown restorations and the optimization of cusp inclination and contact during clinical occlusal adjustments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于有限体积的相场法建立多层牙齿断裂模型。
本研究采用基于有限体积的相场方法(FV-based PFM),旨在研究左下颌第二磨牙在咬合负荷下裂纹的产生和扩展。通过重建患者的锥形束计算机断层扫描图像,将整个牙齿的真实形态和内部中层结构应用到数值模拟中,包括二维切片模型和逼真的三维模型。引入 Weibull 函数来表示牙齿的异质性,从而实现机械参数的随机分布特征。结果表明,较强的异质性会导致更大的裂纹迂回、不均匀的损伤分布和较低的断裂应力。此外,不同的尖角(50° 和 70°)和预先存在的裂隙形态(即 U 形、V 形、IK 形、I 形和 IY 形)也会显著影响牙齿的机械性能。研究显示,不同的尖角会影响裂纹的起始位置。总之,这项工作证明了基于 FV 的 PFM 框架在捕捉牙齿复杂断裂行为方面的实用性,有助于改善牙齿断裂的临床治疗和预防。从这项研究中获得的见解可以为牙冠修复体的设计以及临床咬合调整过程中尖牙倾斜和接触的优化提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
One-step synthesis of a piezoelectric hybrid BNNT/BaTiO3 composite and its application in bone tissue engineering Validation of finite-element-simulated orthodontic forces produced by thermoplastic aligners: Effect of aligner geometry and creep The influence of lumbar vertebra and cage related factors on cage-endplate contact after lumbar interbody fusion: An in-vitro experimental study A benchmark of muscle models to length changes great and small Designs and mechanical responses of 3D-printed Ti6Al4V porous structures based on triply periodic minimal surfaces with different iso-values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1