{"title":"Making waves: Knowledge and data fusion in urban water modelling","authors":"Haoran Duan , Jiuling Li , Zhiguo Yuan","doi":"10.1016/j.wroa.2024.100234","DOIUrl":null,"url":null,"abstract":"<div><p>Mathematical modeling plays a crucial role in understanding and managing urban water systems (UWS), with mechanistic models often serving as the foundation for their design and operations. Despite the wide adoptions, mechanistic models are challenged by the complexity of dynamic processes and high computational demands. Data-driven models bring opportunities to capture system complexities and reduce computational cost, by leveraging the abundant data made available by recent advance in sensor technologies. However, the interpretability and data availability hinder their wider adoption. This paper advocates for a paradigm shift in the application of data-driven models within the context of UWS. Integrating existing mechanistic knowledge into data-driven modeling offers a unique solution that reduces data requirements and enhances model interpretability. The knowledge-informed approach balances model complexity with dataset size, enabling more efficient and interpretable modeling in UWS. Furthermore, the integration of mechanistic and data-driven models offers a more accurate representation of UWS dynamics, addressing lingering uncertainties and advancing modelling capabilities. This paper presents perspectives and conceptual framework on developing and implementing knowledge-informed data-driven modeling, highlighting their potential to improve UWS management in the digital era.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"24 ","pages":"Article 100234"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000240/pdfft?md5=7547a82c02c770eb6c31d650de7b1969&pid=1-s2.0-S2589914724000240-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914724000240","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modeling plays a crucial role in understanding and managing urban water systems (UWS), with mechanistic models often serving as the foundation for their design and operations. Despite the wide adoptions, mechanistic models are challenged by the complexity of dynamic processes and high computational demands. Data-driven models bring opportunities to capture system complexities and reduce computational cost, by leveraging the abundant data made available by recent advance in sensor technologies. However, the interpretability and data availability hinder their wider adoption. This paper advocates for a paradigm shift in the application of data-driven models within the context of UWS. Integrating existing mechanistic knowledge into data-driven modeling offers a unique solution that reduces data requirements and enhances model interpretability. The knowledge-informed approach balances model complexity with dataset size, enabling more efficient and interpretable modeling in UWS. Furthermore, the integration of mechanistic and data-driven models offers a more accurate representation of UWS dynamics, addressing lingering uncertainties and advancing modelling capabilities. This paper presents perspectives and conceptual framework on developing and implementing knowledge-informed data-driven modeling, highlighting their potential to improve UWS management in the digital era.
Water Research XEnvironmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍:
Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.