Ageing underground water pipelines: Time-to-failure models, gaps and future directions

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research X Pub Date : 2025-03-13 DOI:10.1016/j.wroa.2025.100331
Beenish Bakhtawar , Tarek Zayed , Ibrahim Abdelfadeel Shaban , Nehal Elshaboury , Abdul-Mugis Yussif
{"title":"Ageing underground water pipelines: Time-to-failure models, gaps and future directions","authors":"Beenish Bakhtawar ,&nbsp;Tarek Zayed ,&nbsp;Ibrahim Abdelfadeel Shaban ,&nbsp;Nehal Elshaboury ,&nbsp;Abdul-Mugis Yussif","doi":"10.1016/j.wroa.2025.100331","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of the failure time of individual pipelines of a water distribution network can assist in preventing sudden bursts and leaks. Failure prediction over time can help eliminate managerial uncertainty in pipe rehabilitation and replacement decision-making. Since time-based deterioration modeling has less focus in past research, the study focuses on a critical review of the current state-of-the-art for time-to-failure/failure age models related to water pipelines. A unique unsupervised learning-based clustering framework is used to perform an in-depth and robust literature analysis. Hierarchical clustering reveals the main modeling approaches, classified as 1) physical data-based models and 2) historical data-based failure models. Critical research gaps are further explored using t-SNE and Gaussian Mixture Models based clustering. Identified gaps include fragmented modeling approaches, lack of integration between physical and data-driven models, limited data related issues, and a lack of insight on practical translation of model findings for effective utility management. Future studies can consider several integration strategies to overcome individual model limitations, use of generative AI to enrich data, IoT implementation for physical data collection, improve feature engineering and feature extraction efforts, and consider domain knowledge from hydraulic models to improve AI models. Overall, the study offers practical insights for predicting the remaining time-to-failure and service life of water pipelines.</div></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":"29 ","pages":"Article 100331"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914725000301","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of the failure time of individual pipelines of a water distribution network can assist in preventing sudden bursts and leaks. Failure prediction over time can help eliminate managerial uncertainty in pipe rehabilitation and replacement decision-making. Since time-based deterioration modeling has less focus in past research, the study focuses on a critical review of the current state-of-the-art for time-to-failure/failure age models related to water pipelines. A unique unsupervised learning-based clustering framework is used to perform an in-depth and robust literature analysis. Hierarchical clustering reveals the main modeling approaches, classified as 1) physical data-based models and 2) historical data-based failure models. Critical research gaps are further explored using t-SNE and Gaussian Mixture Models based clustering. Identified gaps include fragmented modeling approaches, lack of integration between physical and data-driven models, limited data related issues, and a lack of insight on practical translation of model findings for effective utility management. Future studies can consider several integration strategies to overcome individual model limitations, use of generative AI to enrich data, IoT implementation for physical data collection, improve feature engineering and feature extraction efforts, and consider domain knowledge from hydraulic models to improve AI models. Overall, the study offers practical insights for predicting the remaining time-to-failure and service life of water pipelines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
期刊最新文献
Micropollutants removal, residual risk, and costs for quaternary treatments in the framework of the Urban Wastewater Treatment Directive Exploration of deep learning leak detection model across multiple smart water distribution systems: Detectable leak sizes with AMI meters Ageing underground water pipelines: Time-to-failure models, gaps and future directions Leak detection in water supply networks using two-stage temporal segmentation and incremental learning for non-stationary acoustic signals Fungal pretreatment as a promising approach for simultaneous recovery of phosphorus and carbon resource from garden waste: Performance and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1