{"title":"Analysis on rotation timing of dynamic Rotating latent-energy-storage envelope (RLESE)","authors":"Xi Meng","doi":"10.1016/j.dibe.2024.100498","DOIUrl":null,"url":null,"abstract":"<div><p>The application efficiency of the Dynamic Rotating Latent-Energy-Storage Envelope (DRLESE) system is highly contingent upon dynamic rotation timings. To gain the optimal rotation timings, six different timings were examined by employing the liquid fraction, thermal storage and release, surface temperature and heat flow. The numerical heat transfer method was employed and verified an experiment. Results indicated that the optimal initial rotation occurs in the forenoon, when the inner surface temperature aligns with the sol-air temperature. Subsequently, achieving optimal secondary rotation is possible in the afternoon when the sol-air temperature equals the liquid temperature of PCM (Phase Change Material). Under these optimized initial and secondary rotation timings, the significant enhancements in thermal performance of the DRLESE system were observed. By optimizing rotation timings, indoor effective heat release can reach up to 3182.9 kJ/Day with an effectiveness percentage exceeding 99.99%, and inner surface heat flow was increased by 5.86%–12.26%.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100498"},"PeriodicalIF":6.2000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001790/pdfft?md5=f93ee6862bc81ae2d412896b3d3aab0f&pid=1-s2.0-S2666165924001790-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001790","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The application efficiency of the Dynamic Rotating Latent-Energy-Storage Envelope (DRLESE) system is highly contingent upon dynamic rotation timings. To gain the optimal rotation timings, six different timings were examined by employing the liquid fraction, thermal storage and release, surface temperature and heat flow. The numerical heat transfer method was employed and verified an experiment. Results indicated that the optimal initial rotation occurs in the forenoon, when the inner surface temperature aligns with the sol-air temperature. Subsequently, achieving optimal secondary rotation is possible in the afternoon when the sol-air temperature equals the liquid temperature of PCM (Phase Change Material). Under these optimized initial and secondary rotation timings, the significant enhancements in thermal performance of the DRLESE system were observed. By optimizing rotation timings, indoor effective heat release can reach up to 3182.9 kJ/Day with an effectiveness percentage exceeding 99.99%, and inner surface heat flow was increased by 5.86%–12.26%.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.