Diosgenin reverses posttraumatic stress disorder in mice by augmenting neurochemical release and inhibiting HPA axis dysfunction, oxidative stress, and neuroinflammation
Benneth Ben-Azu , Olusegun G. Adebayo , Adaeze Adebesin , Kenneth C. Oparaji , Vivian O. Ojiokor , Gift C. Pender , Bensody O. Odeghe , Noah A. Omeiza , Halimat A. Abdulrahim , Vivian Ezieshi , Glory Ighosotu , Emmanuel Omo-Odudu , Ekene I. Monye
{"title":"Diosgenin reverses posttraumatic stress disorder in mice by augmenting neurochemical release and inhibiting HPA axis dysfunction, oxidative stress, and neuroinflammation","authors":"Benneth Ben-Azu , Olusegun G. Adebayo , Adaeze Adebesin , Kenneth C. Oparaji , Vivian O. Ojiokor , Gift C. Pender , Bensody O. Odeghe , Noah A. Omeiza , Halimat A. Abdulrahim , Vivian Ezieshi , Glory Ighosotu , Emmanuel Omo-Odudu , Ekene I. Monye","doi":"10.1016/j.jadr.2024.100814","DOIUrl":null,"url":null,"abstract":"<div><p>Post-traumatic stress disorder (PTSD) is a mental disorder linked to neurochemical, hypothalamic-pituitary-adrenal (HPA)-axis dysregulations, inflammatory and pro-oxidant challenges in response to traumatic events. It is one of the leading causes of neurocognitive declines, hence prompting the need for a pharmacological intervention. However, the impact of diosgenin, a naturally occurring steroidal saponin with adaptogenic-like action, on PTSD-induced neuropsychiatric disturbances and its underlying mechanisms are unknown. In this study, we investigated the outcome of diosgenin treatment in a multimodal traumatic, single prolonged stress (SPS)-induced PTSD in mice. Following the SPS-induced 7 days of PTSD, mice (<em>n</em> = 9) were thereafter treated with diosgenin (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally from days 8–20 (14 days). Locomotory, cognitive-, depressive- and anxiety-like behaviors were investigated. We assayed for changes in adrenal weight, serum glucose and corticosterone concentrations. Neurochemical, inflammatory, oxido-nitrergic dysfunctions and monoamine oxidase-B and acetylcholinesterase activities, were measured in the striatum, prefrontal-cortex and hippocampus. The results revealed that the SPS challenge inhibited locomotor, spatial/non-spatial memory functions, increased anxiety and depressive-like features, which were reversed by diosgenin. Diosgenin reduced SPS-induced increased monoamine oxidase-B, acetylcholinesterase activities, TNF-α, IL-6, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. Antioxidants such as glutathione, superoxide-dismutase, and catalase levels in SPS-mice brains were increased by diosgenin. Moreover, diosgenin attenuated SPS-induced hyper-HPA-axis mediation of PTSD by decreasing serum corticosterone, glucose levels and adrenal gland hypertrophy. Herewith, we suggest that diosgenin convenes adaptogenic-like protection against mice exposed to PTSD by enhancing antioxidant machinery, neurochemical modulations, and inhibition of oxido-nitrergic, inflammatory, and HPA-axis dysfunctions.</p></div>","PeriodicalId":52768,"journal":{"name":"Journal of Affective Disorders Reports","volume":"17 ","pages":"Article 100814"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666915324001008/pdfft?md5=6f7ac5b5155266973208238c7f095496&pid=1-s2.0-S2666915324001008-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Affective Disorders Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666915324001008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0
Abstract
Post-traumatic stress disorder (PTSD) is a mental disorder linked to neurochemical, hypothalamic-pituitary-adrenal (HPA)-axis dysregulations, inflammatory and pro-oxidant challenges in response to traumatic events. It is one of the leading causes of neurocognitive declines, hence prompting the need for a pharmacological intervention. However, the impact of diosgenin, a naturally occurring steroidal saponin with adaptogenic-like action, on PTSD-induced neuropsychiatric disturbances and its underlying mechanisms are unknown. In this study, we investigated the outcome of diosgenin treatment in a multimodal traumatic, single prolonged stress (SPS)-induced PTSD in mice. Following the SPS-induced 7 days of PTSD, mice (n = 9) were thereafter treated with diosgenin (25 and 50 mg/kg) or fluoxetine (10 mg/kg) orally from days 8–20 (14 days). Locomotory, cognitive-, depressive- and anxiety-like behaviors were investigated. We assayed for changes in adrenal weight, serum glucose and corticosterone concentrations. Neurochemical, inflammatory, oxido-nitrergic dysfunctions and monoamine oxidase-B and acetylcholinesterase activities, were measured in the striatum, prefrontal-cortex and hippocampus. The results revealed that the SPS challenge inhibited locomotor, spatial/non-spatial memory functions, increased anxiety and depressive-like features, which were reversed by diosgenin. Diosgenin reduced SPS-induced increased monoamine oxidase-B, acetylcholinesterase activities, TNF-α, IL-6, malondialdehyde and nitrite levels in the striatum, prefrontal-cortex and hippocampus. Antioxidants such as glutathione, superoxide-dismutase, and catalase levels in SPS-mice brains were increased by diosgenin. Moreover, diosgenin attenuated SPS-induced hyper-HPA-axis mediation of PTSD by decreasing serum corticosterone, glucose levels and adrenal gland hypertrophy. Herewith, we suggest that diosgenin convenes adaptogenic-like protection against mice exposed to PTSD by enhancing antioxidant machinery, neurochemical modulations, and inhibition of oxido-nitrergic, inflammatory, and HPA-axis dysfunctions.