Abdelhak Bouhamed , Abella Elkabouss , Pitágoras P. de Carvalho , Hassane Bouzahir
{"title":"Boundary optimal control problem of semi-linear Kirchhoff plate equation","authors":"Abdelhak Bouhamed , Abella Elkabouss , Pitágoras P. de Carvalho , Hassane Bouzahir","doi":"10.1016/j.nonrwa.2024.104146","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines a nonlinear Kirchhoff plate equation, where the control acts in bilinear form within the boundary of the mentioned equation. The objective is to construct a distributed control to guide such a system from the initial state to the desired state in the final time, while minimizing a quadratic functional cost defined as the sum of the norm difference between the aforementioned state and a desired equation with an energy term. We show how to approximate the solution of the nonlinear Kirchhoff plate equation to a desired objective, indicating the existence of optimal control in specific cases. and deriving the optimally conditions for a closed convex set. Moreover, it is shown that sufficient conditions ensures the uniqueness of control optimal. Furthermore, we provide a concise numerical methodology that involves the integration of finite element and finite difference discretization methods. The approach incorporates Newton’s linearization method to assess the computational performance of the controlled problem, using the Freefem++ software.</p></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"80 ","pages":"Article 104146"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000865","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper examines a nonlinear Kirchhoff plate equation, where the control acts in bilinear form within the boundary of the mentioned equation. The objective is to construct a distributed control to guide such a system from the initial state to the desired state in the final time, while minimizing a quadratic functional cost defined as the sum of the norm difference between the aforementioned state and a desired equation with an energy term. We show how to approximate the solution of the nonlinear Kirchhoff plate equation to a desired objective, indicating the existence of optimal control in specific cases. and deriving the optimally conditions for a closed convex set. Moreover, it is shown that sufficient conditions ensures the uniqueness of control optimal. Furthermore, we provide a concise numerical methodology that involves the integration of finite element and finite difference discretization methods. The approach incorporates Newton’s linearization method to assess the computational performance of the controlled problem, using the Freefem++ software.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.