Mehdi Hosseinzadeh , Saqib Ali , Husham Jawad Ahmad , Faisal Alanazi , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Omed Hassan Ahmed , Amir Masoud Rahmani , Sang-Woong Lee
{"title":"A novel Q-learning-based secure routing scheme with a robust defensive system against wormhole attacks in flying ad hoc networks","authors":"Mehdi Hosseinzadeh , Saqib Ali , Husham Jawad Ahmad , Faisal Alanazi , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Omed Hassan Ahmed , Amir Masoud Rahmani , Sang-Woong Lee","doi":"10.1016/j.vehcom.2024.100826","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, unmanned aerial vehicles (UAVs) organized in a flying ad hoc network (FANET) can successfully carry out complex missions. Due to the limitations of these networks, including the lack of infrastructure, wireless communication channels, dynamic topology, and unreliable communication between UAVs, cyberattacks, especially wormholes, weaken the performance of routing schemes. Therefore, maintaining communication security and guaranteeing the quality of service (QoS) are very challenging. In this paper, a novel Q-learning-based secure routing scheme (QSR) is presented for FANETs. QSR seeks to provide a robust defensive system against wormhole attacks, especially wormhole through encapsulation and wormhole through packet relay. QSR includes a secure neighbor discovery process and a Q-learning-based secure routing process. Firstly, each UAV gets information about its neighboring UAVs securely. To secure communication in this process, a local monitoring system is designed to counteract the wormhole attack through packet relay. This system checks data packets exchanged between neighboring UAVs and defines three rules according to the behavior of wormholes. In the second process, UAVs perform a distributed Q-learning-based routing process to counteract the wormhole attack through encapsulation. To reward the safest paths, a reward function is introduced based on five factors, the average one-hop delay, hop count, data loss ratio, packet transmission frequency (PTF), and packet reception frequency (PRF). Finally, the NS2 simulator is applied for implementing QSR and executing different scenarios. The evaluation results show that QSR works better than TOPCM, MNRiRIP, and MNDA in terms of accuracy, malicious node detection rate, data delivery ratio, and data loss ratio. However, it has more delay than TOPCM.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"49 ","pages":"Article 100826"},"PeriodicalIF":5.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624001013","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, unmanned aerial vehicles (UAVs) organized in a flying ad hoc network (FANET) can successfully carry out complex missions. Due to the limitations of these networks, including the lack of infrastructure, wireless communication channels, dynamic topology, and unreliable communication between UAVs, cyberattacks, especially wormholes, weaken the performance of routing schemes. Therefore, maintaining communication security and guaranteeing the quality of service (QoS) are very challenging. In this paper, a novel Q-learning-based secure routing scheme (QSR) is presented for FANETs. QSR seeks to provide a robust defensive system against wormhole attacks, especially wormhole through encapsulation and wormhole through packet relay. QSR includes a secure neighbor discovery process and a Q-learning-based secure routing process. Firstly, each UAV gets information about its neighboring UAVs securely. To secure communication in this process, a local monitoring system is designed to counteract the wormhole attack through packet relay. This system checks data packets exchanged between neighboring UAVs and defines three rules according to the behavior of wormholes. In the second process, UAVs perform a distributed Q-learning-based routing process to counteract the wormhole attack through encapsulation. To reward the safest paths, a reward function is introduced based on five factors, the average one-hop delay, hop count, data loss ratio, packet transmission frequency (PTF), and packet reception frequency (PRF). Finally, the NS2 simulator is applied for implementing QSR and executing different scenarios. The evaluation results show that QSR works better than TOPCM, MNRiRIP, and MNDA in terms of accuracy, malicious node detection rate, data delivery ratio, and data loss ratio. However, it has more delay than TOPCM.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.