Data-driven prediction of cylinder-induced unsteady wake flow

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN Applied Ocean Research Pub Date : 2024-07-08 DOI:10.1016/j.apor.2024.104114
Shicheng Li , James Yang , Penghua Teng
{"title":"Data-driven prediction of cylinder-induced unsteady wake flow","authors":"Shicheng Li ,&nbsp;James Yang ,&nbsp;Penghua Teng","doi":"10.1016/j.apor.2024.104114","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding cylinder-induced wake is pivotal in fluid dynamics, providing essential insights for the design and analysis of various structures, including offshore platforms, bridges, and buildings. To achieve fast and accurate modeling, this study introduces a novel reduced-order model (ROM) utilizing dynamic mode decomposition (DMD) and an advanced deep learning framework, specifically an attention-enhanced convolutional neural network-long short-term memory networks model (CNN-LSTM), for predicting cylinder-induced unsteady wake flows. The DMD efficiently simplifies complex fluid systems while retaining key dynamics, thus significantly saving computational costs. By leveraging its combined strengths, the CNN-LSTM with an attention mechanism effectively captures complex spatiotemporal features. The resulting ROM accurately reproduces the wake processes around a cylinder (group), demonstrating high consistency with computational fluid dynamics (CFD) solutions (coefficient of determination &gt; 0.98), and showcases satisfactory resilience to a (Gaussian) noise level of up to 25 %. This study contributes a robust ROM capable of handling spatiotemporal dynamics, facilitating swift prediction of future outcomes using historical data, which is particularly critical for efficient real-time analysis and informed decision-making in dynamic settings, e.g., digital twins and predictive maintenance.</p></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141118724002359/pdfft?md5=eaa16b068433e1365b57bd342fac51f3&pid=1-s2.0-S0141118724002359-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724002359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding cylinder-induced wake is pivotal in fluid dynamics, providing essential insights for the design and analysis of various structures, including offshore platforms, bridges, and buildings. To achieve fast and accurate modeling, this study introduces a novel reduced-order model (ROM) utilizing dynamic mode decomposition (DMD) and an advanced deep learning framework, specifically an attention-enhanced convolutional neural network-long short-term memory networks model (CNN-LSTM), for predicting cylinder-induced unsteady wake flows. The DMD efficiently simplifies complex fluid systems while retaining key dynamics, thus significantly saving computational costs. By leveraging its combined strengths, the CNN-LSTM with an attention mechanism effectively captures complex spatiotemporal features. The resulting ROM accurately reproduces the wake processes around a cylinder (group), demonstrating high consistency with computational fluid dynamics (CFD) solutions (coefficient of determination > 0.98), and showcases satisfactory resilience to a (Gaussian) noise level of up to 25 %. This study contributes a robust ROM capable of handling spatiotemporal dynamics, facilitating swift prediction of future outcomes using historical data, which is particularly critical for efficient real-time analysis and informed decision-making in dynamic settings, e.g., digital twins and predictive maintenance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的气缸诱导非稳态尾流预测
了解气缸诱发的尾流在流体动力学中至关重要,可为包括海上平台、桥梁和建筑物在内的各种结构的设计和分析提供重要见解。为了实现快速、准确的建模,本研究引入了一种新的减阶模型(ROM),利用动态模态分解(DMD)和先进的深度学习框架,特别是注意力增强型卷积神经网络-长短期记忆网络模型(CNN-LSTM),来预测气缸诱发的非稳态尾流。DMD 可有效简化复杂的流体系统,同时保留关键的动力学特性,从而大大节省计算成本。利用其综合优势,带有注意力机制的 CNN-LSTM 能有效捕捉复杂的时空特征。由此产生的 ROM 准确地再现了圆柱体(组)周围的尾流过程,与计算流体动力学(CFD)解决方案具有很高的一致性(判定系数为 0.98),并在高达 25% 的(高斯)噪声水平下表现出令人满意的弹性。这项研究提供了一种能够处理时空动态的稳健 ROM,有助于利用历史数据快速预测未来结果,这对于动态环境中的高效实时分析和知情决策尤为重要,例如数字双胞胎和预测性维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
期刊最新文献
Investigation of morphodynamic response to the storm-induced currents and waves in the Bay of Bengal Wave Energy Potential and the Role of Extreme Events on South America's Coasts. A Regional Frequency Analysis Evaluation, sampling and testing methods for offshore disturbed sands with plastic fines: A case study Dynamic response of three different floating platform (OC4, BSS, GVA) using multi-segment mooring system Numerical study of underwater acoustic radiation and propagation induced by structural vibration in ocean environments using FEM-BMSBM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1