Rita C. Bicho , Janeck J. Scott-Fordsmand , Mónica J.B. Amorim
{"title":"Climate change in edaphic systems – Impact of salinity intrusions in terrestrial invertebrates","authors":"Rita C. Bicho , Janeck J. Scott-Fordsmand , Mónica J.B. Amorim","doi":"10.1016/j.pedobi.2024.150976","DOIUrl":null,"url":null,"abstract":"<div><p>Amongst climate change’s impacts a major concern is salinization of soils, for example due to saltwater intrusion. The aim of the present study was to investigate in a standard field soil the impacts of soil salinity increase. The purpose was to study this in two soil invertebrates that are key model ecotoxicology test-species, <em>Enchytraeus crypticus</em> and <em>Folsomia candida</em> as surrogate representatives of the soil ecosystem. The exposure followed the standard ecotoxicity OECD (Organization for Economic Cooperation and Development) test guidelines, and the assessed endpoints were survival, reproduction and size. Exposure done in LUFA 2.2 soil, spiked with 0,0.6,1,2,3,4,5,6,8 g NaCl/kg soil dry weight (DW) for <em>E. crypticus</em> (21 days) and 0,0.06,0.6,1,2,3,4,5,6 g NaCl/kg soil DW for <em>F. candida</em> (28 days). There was a similar impact for both species in terms of survival (LC<sub>50</sub>=4.2 g NaCl/kg soil DW), whereas at the reproductive output level of <em>F. candida</em> (EC<sub>50</sub>=2.1 g NaCl/kg soil DW) was more sensitive than <em>E. crypticus</em> (EC<sub>50</sub>=2.4 g NaCl/kg soil DW). Further, size was impacted for <em>F. candida</em> in a monotonic dose-response curve for both adults (EC<sub>50</sub>=3.5 g NaCl/kg soil DW) and juveniles (EC<sub>50</sub>=2 g NaCl/kg soil DW), whereas for <em>E. crypticus</em> there was an increase in reproductive output at lower concentrations (0.6–1 g NaCl/kg soil DW). This increased reproduction was associated with a larger size of adults within the same concentration range. Considering the prediction from the climate models, the soil invertebrate community will be affected. As upper soils are likely to have the highest salinity increase due to evaporation, soil surface species, such as the collembolan tested here, are at higher risk. Negative population effects were occurring within salinity levels predicted by climate change models.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0031405624034978/pdfft?md5=f607a7ffe3d08b887910eebb3cccd142&pid=1-s2.0-S0031405624034978-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624034978","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amongst climate change’s impacts a major concern is salinization of soils, for example due to saltwater intrusion. The aim of the present study was to investigate in a standard field soil the impacts of soil salinity increase. The purpose was to study this in two soil invertebrates that are key model ecotoxicology test-species, Enchytraeus crypticus and Folsomia candida as surrogate representatives of the soil ecosystem. The exposure followed the standard ecotoxicity OECD (Organization for Economic Cooperation and Development) test guidelines, and the assessed endpoints were survival, reproduction and size. Exposure done in LUFA 2.2 soil, spiked with 0,0.6,1,2,3,4,5,6,8 g NaCl/kg soil dry weight (DW) for E. crypticus (21 days) and 0,0.06,0.6,1,2,3,4,5,6 g NaCl/kg soil DW for F. candida (28 days). There was a similar impact for both species in terms of survival (LC50=4.2 g NaCl/kg soil DW), whereas at the reproductive output level of F. candida (EC50=2.1 g NaCl/kg soil DW) was more sensitive than E. crypticus (EC50=2.4 g NaCl/kg soil DW). Further, size was impacted for F. candida in a monotonic dose-response curve for both adults (EC50=3.5 g NaCl/kg soil DW) and juveniles (EC50=2 g NaCl/kg soil DW), whereas for E. crypticus there was an increase in reproductive output at lower concentrations (0.6–1 g NaCl/kg soil DW). This increased reproduction was associated with a larger size of adults within the same concentration range. Considering the prediction from the climate models, the soil invertebrate community will be affected. As upper soils are likely to have the highest salinity increase due to evaporation, soil surface species, such as the collembolan tested here, are at higher risk. Negative population effects were occurring within salinity levels predicted by climate change models.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.